Cargando…
Genome-wide association mapping of seed oligosaccharides in chickpea
Chickpea (Cicer arietinum L.) is one of the major pulse crops, rich in protein, and widely consumed all over the world. Most legumes, including chickpeas, possess noticeable amounts of raffinose family oligosaccharides (RFOs) in their seeds. RFOs are seed oligosaccharides abundant in nature, which a...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9638045/ https://www.ncbi.nlm.nih.gov/pubmed/36352859 http://dx.doi.org/10.3389/fpls.2022.1024543 |
_version_ | 1784825320127332352 |
---|---|
author | Elango, Dinakaran Wang, Wanyan Thudi, Mahender Sebastiar, Sheelamary Ramadoss, Bharathi Raja Varshney, Rajeev K. |
author_facet | Elango, Dinakaran Wang, Wanyan Thudi, Mahender Sebastiar, Sheelamary Ramadoss, Bharathi Raja Varshney, Rajeev K. |
author_sort | Elango, Dinakaran |
collection | PubMed |
description | Chickpea (Cicer arietinum L.) is one of the major pulse crops, rich in protein, and widely consumed all over the world. Most legumes, including chickpeas, possess noticeable amounts of raffinose family oligosaccharides (RFOs) in their seeds. RFOs are seed oligosaccharides abundant in nature, which are non-digestible by humans and animals and cause flatulence and severe abdominal discomforts. So, this study aims to identify genetic factors associated with seed oligosaccharides in chickpea using the mini-core panel. We have quantified the RFOs (raffinose and stachyose), ciceritol, and sucrose contents in chickpea using high-performance liquid chromatography. A wide range of variations for the seed oligosaccharides was observed between the accessions: 0.16 to 15.13 mg g(-1) raffinose, 2.77 to 59.43 mg g(-1) stachyose, 4.36 to 90.65 mg g(-1) ciceritol, and 3.57 to 54.12 mg g(-1) for sucrose. Kabuli types showed desirable sugar profiles with high sucrose, whereas desi types had high concentrations RFOs. In total, 48 single nucleotide polymorphisms (SNPs) were identified for all the targeted sugar types, and nine genes (Ca_06204, Ca_04353, and Ca_20828: Phosphatidylinositol N-acetylglucosaminyltransferase; Ca_17399 and Ca_22050: Remorin proteins; Ca_11152: Protein-serine/threonine phosphatase; Ca_10185, Ca_14209, and Ca_27229: UDP-glucose dehydrogenase) were identified as potential candidate genes for sugar metabolism and transport in chickpea. The accessions with low RFOs and high sucrose contents may be utilized in breeding specialty chickpeas. The identified candidate genes could be exploited in marker-assisted breeding, genomic selection, and genetic engineering to improve the sugar profiles in legumes and other crop species. |
format | Online Article Text |
id | pubmed-9638045 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-96380452022-11-08 Genome-wide association mapping of seed oligosaccharides in chickpea Elango, Dinakaran Wang, Wanyan Thudi, Mahender Sebastiar, Sheelamary Ramadoss, Bharathi Raja Varshney, Rajeev K. Front Plant Sci Plant Science Chickpea (Cicer arietinum L.) is one of the major pulse crops, rich in protein, and widely consumed all over the world. Most legumes, including chickpeas, possess noticeable amounts of raffinose family oligosaccharides (RFOs) in their seeds. RFOs are seed oligosaccharides abundant in nature, which are non-digestible by humans and animals and cause flatulence and severe abdominal discomforts. So, this study aims to identify genetic factors associated with seed oligosaccharides in chickpea using the mini-core panel. We have quantified the RFOs (raffinose and stachyose), ciceritol, and sucrose contents in chickpea using high-performance liquid chromatography. A wide range of variations for the seed oligosaccharides was observed between the accessions: 0.16 to 15.13 mg g(-1) raffinose, 2.77 to 59.43 mg g(-1) stachyose, 4.36 to 90.65 mg g(-1) ciceritol, and 3.57 to 54.12 mg g(-1) for sucrose. Kabuli types showed desirable sugar profiles with high sucrose, whereas desi types had high concentrations RFOs. In total, 48 single nucleotide polymorphisms (SNPs) were identified for all the targeted sugar types, and nine genes (Ca_06204, Ca_04353, and Ca_20828: Phosphatidylinositol N-acetylglucosaminyltransferase; Ca_17399 and Ca_22050: Remorin proteins; Ca_11152: Protein-serine/threonine phosphatase; Ca_10185, Ca_14209, and Ca_27229: UDP-glucose dehydrogenase) were identified as potential candidate genes for sugar metabolism and transport in chickpea. The accessions with low RFOs and high sucrose contents may be utilized in breeding specialty chickpeas. The identified candidate genes could be exploited in marker-assisted breeding, genomic selection, and genetic engineering to improve the sugar profiles in legumes and other crop species. Frontiers Media S.A. 2022-10-24 /pmc/articles/PMC9638045/ /pubmed/36352859 http://dx.doi.org/10.3389/fpls.2022.1024543 Text en Copyright © 2022 Elango, Wang, Thudi, Sebastiar, Ramadoss and Varshney https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Elango, Dinakaran Wang, Wanyan Thudi, Mahender Sebastiar, Sheelamary Ramadoss, Bharathi Raja Varshney, Rajeev K. Genome-wide association mapping of seed oligosaccharides in chickpea |
title | Genome-wide association mapping of seed oligosaccharides in chickpea |
title_full | Genome-wide association mapping of seed oligosaccharides in chickpea |
title_fullStr | Genome-wide association mapping of seed oligosaccharides in chickpea |
title_full_unstemmed | Genome-wide association mapping of seed oligosaccharides in chickpea |
title_short | Genome-wide association mapping of seed oligosaccharides in chickpea |
title_sort | genome-wide association mapping of seed oligosaccharides in chickpea |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9638045/ https://www.ncbi.nlm.nih.gov/pubmed/36352859 http://dx.doi.org/10.3389/fpls.2022.1024543 |
work_keys_str_mv | AT elangodinakaran genomewideassociationmappingofseedoligosaccharidesinchickpea AT wangwanyan genomewideassociationmappingofseedoligosaccharidesinchickpea AT thudimahender genomewideassociationmappingofseedoligosaccharidesinchickpea AT sebastiarsheelamary genomewideassociationmappingofseedoligosaccharidesinchickpea AT ramadossbharathiraja genomewideassociationmappingofseedoligosaccharidesinchickpea AT varshneyrajeevk genomewideassociationmappingofseedoligosaccharidesinchickpea |