Cargando…
Identification of biomarkers for hepatocellular carcinoma based on single cell sequencing and machine learning algorithms
Hepatocellular carcinoma (HCC) remains one of the most lethal cancers around the world. Precision oncology will be crucial for further improving the prognosis of HCC patients. Compared with traditional bulk RNA-seq, single-cell RNA sequencing (scRNA-seq) enables the transcriptomes of a great deal of...
Autores principales: | Li, Weimin, Liu, Jixing, Zhu, Wenjuan, Jin, Xiaoxin, Yang, Zhi, Gao, Wenzhe, Sun, Jichun, Zhu, Hongwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9638064/ https://www.ncbi.nlm.nih.gov/pubmed/36353113 http://dx.doi.org/10.3389/fgene.2022.873218 |
Ejemplares similares
-
Identification of new co-diagnostic genes for sepsis and metabolic syndrome using single-cell data analysis and machine learning algorithms
por: Tao, Linfeng, et al.
Publicado: (2023) -
Novel peripheral blood diagnostic biomarkers screened by machine learning algorithms in ankylosing spondylitis
por: Wen, Jian, et al.
Publicado: (2022) -
Integrated Machine Learning and Bioinformatic Analyses Constructed a Novel Stemness-Related Classifier to Predict Prognosis and Immunotherapy Responses for Hepatocellular Carcinoma Patients
por: Chen, Dongjie, et al.
Publicado: (2022) -
Machine learning-based transcriptome analysis of lipid metabolism biomarkers for the survival prediction in hepatocellular carcinoma
por: Xiong, Ronghong, et al.
Publicado: (2022) -
Graph Embedding Deep Learning Guides Microbial Biomarkers' Identification
por: Zhu, Qiang, et al.
Publicado: (2019)