Cargando…
Interpretable tourism volume forecasting with multivariate time series under the impact of COVID-19
This study proposes a novel interpretable framework to forecast the daily tourism volume of Jiuzhaigou Valley, Huangshan Mountain, and Siguniang Mountain in China under the impact of COVID-19 by using multivariate time-series data, particularly historical tourism volume data, COVID-19 data, the Baid...
Autores principales: | Wu, Binrong, Wang, Lin, Tao, Rui, Zeng, Yu-Rong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9638251/ https://www.ncbi.nlm.nih.gov/pubmed/36373134 http://dx.doi.org/10.1007/s00521-022-07967-y |
Ejemplares similares
-
Interpretable tourism demand forecasting with temporal fusion transformers amid COVID-19
por: Wu, Binrong, et al.
Publicado: (2022) -
Evaluation of interpretability methods for multivariate time series forecasting
por: Ozyegen, Ozan, et al.
Publicado: (2021) -
Multivariate Count Data Models for Time Series Forecasting
por: Shapovalova, Yuliya, et al.
Publicado: (2021) -
Spatial-Temporal Convolutional Transformer Network for Multivariate Time Series Forecasting
por: Huang, Lei, et al.
Publicado: (2022) -
A Novel Encoder-Decoder Model for Multivariate Time Series Forecasting
por: Zhang, Huihui, et al.
Publicado: (2022)