Cargando…
The numerical solution of a mathematical model of the Covid-19 pandemic utilizing a meshless local discrete Galerkin method
It was in early December 2019 that the terrible news of the outbreak of new coronavirus disease (Covid-19) was reported by the world media, which appeared in Wuhan, China, and is rapidly spreading to other parts of China and several overseas countries. In the field of infectious diseases, modeling,...
Autores principales: | Asadi-Mehregan, Fatemeh, Assari, Pouria, Dehghan, Mehdi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9638320/ https://www.ncbi.nlm.nih.gov/pubmed/36373015 http://dx.doi.org/10.1007/s00366-022-01749-9 |
Ejemplares similares
-
The meshless local Petrov–Galerkin method based on moving Kriging interpolation for solving the time fractional Navier–Stokes equations
por: Thamareerat, N., et al.
Publicado: (2016) -
Numerical solution of COVID-19 pandemic model via finite difference and meshless techniques
por: Zarin, Rahat, et al.
Publicado: (2023) -
A Higher-Order Galerkin Time Discretization and Numerical Comparisons for Two Models of HIV Infection
por: Attaullah,, et al.
Publicado: (2022) -
Mathematical Aspects of Discontinuous Galerkin Methods
por: Di Pietro, Daniele Antonio, et al.
Publicado: (2012) -
Numerical study of a nonlinear COVID-19 pandemic model by finite difference and meshless methods
por: Zarin, Rahat
Publicado: (2022)