Cargando…
Occupancy-aided ventilation for airborne infection risk control: Continuously or intermittently reduced occupancies?
Ventilation is an important engineering measure to control the airborne infection risk of acute respiratory diseases, e.g., Corona Virus Disease 2019 (COVID-19). Occupancy-aided ventilation methods can effectively improve the airborne infection risk control performance with a sacrifice of decreasing...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Tsinghua University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9638348/ https://www.ncbi.nlm.nih.gov/pubmed/36373145 http://dx.doi.org/10.1007/s12273-022-0951-7 |
_version_ | 1784825385456762880 |
---|---|
author | Zhang, Sheng Niu, Dun Lin, Zhang |
author_facet | Zhang, Sheng Niu, Dun Lin, Zhang |
author_sort | Zhang, Sheng |
collection | PubMed |
description | Ventilation is an important engineering measure to control the airborne infection risk of acute respiratory diseases, e.g., Corona Virus Disease 2019 (COVID-19). Occupancy-aided ventilation methods can effectively improve the airborne infection risk control performance with a sacrifice of decreasing working productivity because of the reduced occupancy. This study evaluates the effectiveness of two occupancy-aided ventilation methods, i.e., the continuously reduced occupancy method and the intermittently reduced occupancy method. The continuously reduced occupancy method is determined by the steady equation of the mass conservation law of the indoor contaminant, and the intermittently reduced occupancy method is determined by a genetic algorithm-based optimization. A two-scenarios-based evaluation framework is developed, i.e., one with targeted airborne infection risk control performance (indicated by the mean rebreathed fraction) and the other with targeted working productivity (indicated by the accumulated occupancy). The results show that the improvement in the airborne infection risk control performance linearly and quadratically increases with the reduction in the working productivity for the continuously reduced occupancy method and the intermittently reduced occupancy method respectively. At a given targeted airborne infection risk control performance, the intermittently reduced occupancy method outperforms the continuously reduced occupancy method by improving the working productivity by up to 92%. At a given targeted working productivity, the intermittently reduced occupancy method outperforms the continuously reduced occupancy method by improving the airborne infection risk control performance by up to 38%. |
format | Online Article Text |
id | pubmed-9638348 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Tsinghua University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-96383482022-11-07 Occupancy-aided ventilation for airborne infection risk control: Continuously or intermittently reduced occupancies? Zhang, Sheng Niu, Dun Lin, Zhang Build Simul Research Article Ventilation is an important engineering measure to control the airborne infection risk of acute respiratory diseases, e.g., Corona Virus Disease 2019 (COVID-19). Occupancy-aided ventilation methods can effectively improve the airborne infection risk control performance with a sacrifice of decreasing working productivity because of the reduced occupancy. This study evaluates the effectiveness of two occupancy-aided ventilation methods, i.e., the continuously reduced occupancy method and the intermittently reduced occupancy method. The continuously reduced occupancy method is determined by the steady equation of the mass conservation law of the indoor contaminant, and the intermittently reduced occupancy method is determined by a genetic algorithm-based optimization. A two-scenarios-based evaluation framework is developed, i.e., one with targeted airborne infection risk control performance (indicated by the mean rebreathed fraction) and the other with targeted working productivity (indicated by the accumulated occupancy). The results show that the improvement in the airborne infection risk control performance linearly and quadratically increases with the reduction in the working productivity for the continuously reduced occupancy method and the intermittently reduced occupancy method respectively. At a given targeted airborne infection risk control performance, the intermittently reduced occupancy method outperforms the continuously reduced occupancy method by improving the working productivity by up to 92%. At a given targeted working productivity, the intermittently reduced occupancy method outperforms the continuously reduced occupancy method by improving the airborne infection risk control performance by up to 38%. Tsinghua University Press 2022-11-05 2023 /pmc/articles/PMC9638348/ /pubmed/36373145 http://dx.doi.org/10.1007/s12273-022-0951-7 Text en © Tsinghua University Press 2022 This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic. |
spellingShingle | Research Article Zhang, Sheng Niu, Dun Lin, Zhang Occupancy-aided ventilation for airborne infection risk control: Continuously or intermittently reduced occupancies? |
title | Occupancy-aided ventilation for airborne infection risk control: Continuously or intermittently reduced occupancies? |
title_full | Occupancy-aided ventilation for airborne infection risk control: Continuously or intermittently reduced occupancies? |
title_fullStr | Occupancy-aided ventilation for airborne infection risk control: Continuously or intermittently reduced occupancies? |
title_full_unstemmed | Occupancy-aided ventilation for airborne infection risk control: Continuously or intermittently reduced occupancies? |
title_short | Occupancy-aided ventilation for airborne infection risk control: Continuously or intermittently reduced occupancies? |
title_sort | occupancy-aided ventilation for airborne infection risk control: continuously or intermittently reduced occupancies? |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9638348/ https://www.ncbi.nlm.nih.gov/pubmed/36373145 http://dx.doi.org/10.1007/s12273-022-0951-7 |
work_keys_str_mv | AT zhangsheng occupancyaidedventilationforairborneinfectionriskcontrolcontinuouslyorintermittentlyreducedoccupancies AT niudun occupancyaidedventilationforairborneinfectionriskcontrolcontinuouslyorintermittentlyreducedoccupancies AT linzhang occupancyaidedventilationforairborneinfectionriskcontrolcontinuouslyorintermittentlyreducedoccupancies |