Cargando…
Applications of deep learning methods in digital biomarker research using noninvasive sensing data
Introduction: Noninvasive digital biomarkers are critical elements in digital healthcare in terms of not only the ease of measurement but also their use of raw data. In recent years, deep learning methods have been put to use to analyze these diverse heterogeneous data; these methods include represe...
Autores principales: | Jeong, Hoyeon, Jeong, Yong W, Park, Yeonjae, Kim, Kise, Park, Junghwan, Kang, Dae R |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9638529/ https://www.ncbi.nlm.nih.gov/pubmed/36353696 http://dx.doi.org/10.1177/20552076221136642 |
Ejemplares similares
-
Tumor immune profiles noninvasively estimated by FDG PET with deep learning correlate with immunotherapy response in lung adenocarcinoma
por: Park, Changhee, et al.
Publicado: (2020) -
Engineering digital biomarkers of interstitial glucose from noninvasive smartwatches
por: Bent, Brinnae, et al.
Publicado: (2021) -
Deep learning application of the discrimination of bone marrow aspiration cells in patients with myelodysplastic syndromes
por: Lee, Nuri, et al.
Publicado: (2022) -
Deep learning: research and applications
por: Bhattacharyya, Siddhartha, et al.
Publicado: (2020) -
Application of deep learning technology for temporal analysis of videofluoroscopic swallowing studies
por: Jeong, Seong Yun, et al.
Publicado: (2023)