Cargando…

Automatic segmentation of the great arteries for computational hemodynamic assessment

BACKGROUND: Computational fluid dynamics (CFD) is increasingly used for the assessment of blood flow conditions in patients with congenital heart disease (CHD). This requires patient-specific anatomy, typically obtained from segmented 3D cardiovascular magnetic resonance (CMR) images. However, segme...

Descripción completa

Detalles Bibliográficos
Autores principales: Montalt-Tordera, Javier, Pajaziti, Endrit, Jones, Rod, Sauvage, Emilie, Puranik, Rajesh, Singh, Aakansha Ajay Vir, Capelli, Claudio, Steeden, Jennifer, Schievano, Silvia, Muthurangu, Vivek
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9639271/
https://www.ncbi.nlm.nih.gov/pubmed/36336682
http://dx.doi.org/10.1186/s12968-022-00891-z
Descripción
Sumario:BACKGROUND: Computational fluid dynamics (CFD) is increasingly used for the assessment of blood flow conditions in patients with congenital heart disease (CHD). This requires patient-specific anatomy, typically obtained from segmented 3D cardiovascular magnetic resonance (CMR) images. However, segmentation is time-consuming and requires expert input. This study aims to develop and validate a machine learning (ML) method for segmentation of the aorta and pulmonary arteries for CFD studies. METHODS: 90 CHD patients were retrospectively selected for this study. 3D CMR images were manually segmented to obtain ground-truth (GT) background, aorta and pulmonary artery labels. These were used to train and optimize a U-Net model, using a 70-10-10 train-validation-test split. Segmentation performance was primarily evaluated using Dice score. CFD simulations were set up from GT and ML segmentations using a semi-automatic meshing and simulation pipeline. Mean pressure and velocity fields across 99 planes along the vessel centrelines were extracted, and a mean average percentage error (MAPE) was calculated for each vessel pair (ML vs GT). A second observer (SO) segmented the test dataset for assessment of inter-observer variability. Friedman tests were used to compare ML vs GT, SO vs GT and ML vs SO metrics, and pressure/velocity field errors. RESULTS: The network’s Dice score (ML vs GT) was 0.945 (interquartile range: 0.929–0.955) for the aorta and 0.885 (0.851–0.899) for the pulmonary arteries. Differences with the inter-observer Dice score (SO vs GT) and ML vs SO Dice scores were not statistically significant for either aorta or pulmonary arteries (p = 0.741, p = 0.061). The ML vs GT MAPEs for pressure and velocity in the aorta were 10.1% (8.5–15.7%) and 4.1% (3.1–6.9%), respectively, and for the pulmonary arteries 14.6% (11.5–23.2%) and 6.3% (4.3–7.9%), respectively. Inter-observer (SO vs GT) and ML vs SO pressure and velocity MAPEs were of a similar magnitude to ML vs GT (p > 0.2). CONCLUSIONS: ML can successfully segment the great vessels for CFD, with errors similar to inter-observer variability. This fast, automatic method reduces the time and effort needed for CFD analysis, making it more attractive for routine clinical use. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12968-022-00891-z.