Cargando…
Automatic segmentation of the great arteries for computational hemodynamic assessment
BACKGROUND: Computational fluid dynamics (CFD) is increasingly used for the assessment of blood flow conditions in patients with congenital heart disease (CHD). This requires patient-specific anatomy, typically obtained from segmented 3D cardiovascular magnetic resonance (CMR) images. However, segme...
Autores principales: | Montalt-Tordera, Javier, Pajaziti, Endrit, Jones, Rod, Sauvage, Emilie, Puranik, Rajesh, Singh, Aakansha Ajay Vir, Capelli, Claudio, Steeden, Jennifer, Schievano, Silvia, Muthurangu, Vivek |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9639271/ https://www.ncbi.nlm.nih.gov/pubmed/36336682 http://dx.doi.org/10.1186/s12968-022-00891-z |
Ejemplares similares
-
Shape-driven deep neural networks for fast acquisition of aortic 3D pressure and velocity flow fields
por: Pajaziti, Endrit, et al.
Publicado: (2023) -
FReSCO: Flow Reconstruction and Segmentation for low‐latency Cardiac Output monitoring using deep artifact suppression and segmentation
por: Jaubert, Olivier, et al.
Publicado: (2022) -
Reducing Contrast Agent Dose in Cardiovascular MR Angiography with Deep Learning
por: Montalt‐Tordera, Javier, et al.
Publicado: (2021) -
Real‐time deep artifact suppression using recurrent U‐Nets for low‐latency cardiac MRI
por: Jaubert, Olivier, et al.
Publicado: (2021) -
High throughput cardiac imaging in awake young children: Tips and Tricks
por: Norman, Wendy, et al.
Publicado: (2015)