Cargando…
Duet: SNP-assisted structural variant calling and phasing using Oxford nanopore sequencing
BACKGROUND: Whole genome sequencing using the long-read Oxford Nanopore Technologies (ONT) MinION sequencer provides a cost-effective option for structural variant (SV) detection in clinical applications. Despite the advantage of using long reads, however, accurate SV calling and phasing are still c...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9639287/ https://www.ncbi.nlm.nih.gov/pubmed/36344913 http://dx.doi.org/10.1186/s12859-022-05025-x |
Sumario: | BACKGROUND: Whole genome sequencing using the long-read Oxford Nanopore Technologies (ONT) MinION sequencer provides a cost-effective option for structural variant (SV) detection in clinical applications. Despite the advantage of using long reads, however, accurate SV calling and phasing are still challenging. RESULTS: We introduce Duet, an SV detection tool optimized for SV calling and phasing using ONT data. The tool uses novel features integrated from both SV signatures and single-nucleotide polymorphism signatures, which can accurately distinguish SV haplotype from a false signal. Duet was benchmarked against state-of-the-art tools on multiple ONT sequencing datasets of sequencing coverage ranging from 8× to 40×. At low sequencing coverage of 8×, Duet performs better than all other tools in SV calling, SV genotyping and SV phasing. When the sequencing coverage is higher (20× to 40×), the F1-score for SV phasing is further improved in comparison to the performance of other tools, while its performance of SV genotyping and SV calling remains higher than other tools. CONCLUSION: Duet can perform accurate SV calling, SV genotyping and SV phasing using low-coverage ONT data, making it very useful for low-coverage genomes. It has great performance when scaled to high-coverage genomes, which is adaptable to various clinical applications. Duet is open source and is available at https://github.com/yekaizhou/duet. |
---|