Cargando…
Machine learning based estimation of field-scale daily, high resolution, multi-depth soil moisture for the Western and Midwestern United States
BACKGROUND: High-resolution soil moisture estimates are critical for planning water management and assessing environmental quality. In-situ measurements alone are too costly to support the spatial and temporal resolutions needed for water management. Recent efforts have combined calibration data wit...
Autores principales: | Xia, Yushu, Watts, Jennifer D., Machmuller, Megan B., Sanderman, Jonathan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9639422/ https://www.ncbi.nlm.nih.gov/pubmed/36353602 http://dx.doi.org/10.7717/peerj.14275 |
Ejemplares similares
-
Estimating salt content of vegetated soil at different depths with Sentinel-2 data
por: Chen, Yinwen, et al.
Publicado: (2020) -
High-resolution European daily soil moisture derived with machine learning (2003–2020)
por: O, Sungmin, et al.
Publicado: (2022) -
Identification and expression profile of the soil moisture and Ralstonia solanacearum response CYPome in ginger (Zingiber officinale)
por: Huang, Mengjun, et al.
Publicado: (2021) -
Response of the characteristics of organic carbon mineralization of soft rock and soil composed of sand to soil depth
por: Li, Wanying, et al.
Publicado: (2021) -
The effects of the depth of fertilization on losses of nitrogen and phosphorus and soil fertility in the red paddy soil of China
por: Hou, Kun, et al.
Publicado: (2021)