Cargando…
MSFF-Net: Multi-Stream Feature Fusion Network for surface electromyography gesture recognition
In the field of surface electromyography (sEMG) gesture recognition, how to improve recognition accuracy has been a research hotspot. The rapid development of deep learning provides a new solution to this problem. At present, the main applications of deep learning for sEMG gesture feature extraction...
Autores principales: | Peng, Xiangdong, Zhou, Xiao, Zhu, Huaqiang, Ke, Zejun, Pan, Congcheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9639816/ https://www.ncbi.nlm.nih.gov/pubmed/36342906 http://dx.doi.org/10.1371/journal.pone.0276436 |
Ejemplares similares
-
Data Augmentation of Surface Electromyography for Hand Gesture Recognition
por: Tsinganos, Panagiotis, et al.
Publicado: (2020) -
High-Performance Surface Electromyography Armband Design for Gesture Recognition
por: Zhang, Ruihao, et al.
Publicado: (2023) -
putEMG—A Surface Electromyography Hand Gesture Recognition Dataset
por: Kaczmarek, Piotr, et al.
Publicado: (2019) -
Surgical Instrument Signaling Gesture Recognition Using Surface Electromyography Signals
por: Freitas, Melissa La Banca, et al.
Publicado: (2023) -
Improved Network and Training Scheme for Cross-Trial Surface Electromyography (sEMG)-Based Gesture Recognition
por: Dai, Qingfeng, et al.
Publicado: (2023)