Cargando…
Optimal Deep Learning-Based Vocal Fold Disorder Detection and Classification Model on High-Speed Video Endoscopy
The use of high-speed video-endoscopy (HSV) in the study of phonatory processes linked to speech needs the precise identification of vocal fold boundaries at the time of vibration. The HSV is a unique laryngeal imaging technology that captures intracycle vocal fold vibrations at a higher frame rate...
Autores principales: | Sakthivel, S., Prabhu, V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9640237/ https://www.ncbi.nlm.nih.gov/pubmed/36353680 http://dx.doi.org/10.1155/2022/4248938 |
Ejemplares similares
-
Analysis of Vocal Fold Function From Acoustic Data Simultaneously Recorded With High-Speed Endoscopy
por: Döllinger, Michael, et al.
Publicado: (2012) -
Hybrid Deep Learning Model for Endoscopic Lesion Detection and Classification Using Endoscopy Videos
por: Ayyaz, M Shahbaz, et al.
Publicado: (2021) -
Fully automatic segmentation of glottis and vocal folds in endoscopic laryngeal high-speed videos using a deep Convolutional LSTM Network
por: Fehling, Mona Kirstin, et al.
Publicado: (2020) -
A morphological classification for vocal fold leukoplakia()
por: Chen, Min, et al.
Publicado: (2018) -
Localization and quantification of glottal gaps on deep learning segmentation of vocal folds
por: Pedersen, Mette, et al.
Publicado: (2023)