Cargando…

Non-electric bioelectrical analog strategy by a biophysical-driven nano-micro spatial anisotropic scaffold for regulating stem cell niche and tissue regeneration in a neuronal therapy

The slow regenerating rate and misdirected axonal growth are primary concerns that disturb the curative outcome of peripheral nerve repair. Biophysical intervention through nerve scaffolds can provide efficient, tunable and sustainable guidance for nerve regrowth. Herein, we fabricate the reduced gr...

Descripción completa

Detalles Bibliográficos
Autores principales: Yao, Xiangyun, Zhan, Lei, Yan, Zhiwen, Li, Juehong, Kong, Lingchi, Wang, Xu, Xiao, Huimin, Jiang, Huiquan, Huang, Chen, Ouyang, Yuanming, Qian, Yun, Fan, Cunyi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: KeAi Publishing 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9640298/
https://www.ncbi.nlm.nih.gov/pubmed/36380746
http://dx.doi.org/10.1016/j.bioactmat.2022.05.034
_version_ 1784825816661622784
author Yao, Xiangyun
Zhan, Lei
Yan, Zhiwen
Li, Juehong
Kong, Lingchi
Wang, Xu
Xiao, Huimin
Jiang, Huiquan
Huang, Chen
Ouyang, Yuanming
Qian, Yun
Fan, Cunyi
author_facet Yao, Xiangyun
Zhan, Lei
Yan, Zhiwen
Li, Juehong
Kong, Lingchi
Wang, Xu
Xiao, Huimin
Jiang, Huiquan
Huang, Chen
Ouyang, Yuanming
Qian, Yun
Fan, Cunyi
author_sort Yao, Xiangyun
collection PubMed
description The slow regenerating rate and misdirected axonal growth are primary concerns that disturb the curative outcome of peripheral nerve repair. Biophysical intervention through nerve scaffolds can provide efficient, tunable and sustainable guidance for nerve regrowth. Herein, we fabricate the reduced graphene oxide (rGO)/polycaprolactone (PCL) scaffold characterized with anisotropic microfibers and oriented nanogrooves by electrospinning technique. Adipose-derived stem cells (ADSCs) are seeded on the scaffolds in vitro and the viability, neural differentiation efficiency and neurotrophic potential are investigated. RGO/PCL conduits reprogram the phenotype of seeded cells and efficiently repair 15 mm sciatic nerve defect in rats. In summary, biophysical cues on nerve scaffolds are key determinants to stem cell phenotype, and ADSC-seeded rGO/PCL oriented scaffolds are promising, controllable and sustainable approaches to enable peripheral nerve regeneration.
format Online
Article
Text
id pubmed-9640298
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher KeAi Publishing
record_format MEDLINE/PubMed
spelling pubmed-96402982022-11-14 Non-electric bioelectrical analog strategy by a biophysical-driven nano-micro spatial anisotropic scaffold for regulating stem cell niche and tissue regeneration in a neuronal therapy Yao, Xiangyun Zhan, Lei Yan, Zhiwen Li, Juehong Kong, Lingchi Wang, Xu Xiao, Huimin Jiang, Huiquan Huang, Chen Ouyang, Yuanming Qian, Yun Fan, Cunyi Bioact Mater Article The slow regenerating rate and misdirected axonal growth are primary concerns that disturb the curative outcome of peripheral nerve repair. Biophysical intervention through nerve scaffolds can provide efficient, tunable and sustainable guidance for nerve regrowth. Herein, we fabricate the reduced graphene oxide (rGO)/polycaprolactone (PCL) scaffold characterized with anisotropic microfibers and oriented nanogrooves by electrospinning technique. Adipose-derived stem cells (ADSCs) are seeded on the scaffolds in vitro and the viability, neural differentiation efficiency and neurotrophic potential are investigated. RGO/PCL conduits reprogram the phenotype of seeded cells and efficiently repair 15 mm sciatic nerve defect in rats. In summary, biophysical cues on nerve scaffolds are key determinants to stem cell phenotype, and ADSC-seeded rGO/PCL oriented scaffolds are promising, controllable and sustainable approaches to enable peripheral nerve regeneration. KeAi Publishing 2022-06-13 /pmc/articles/PMC9640298/ /pubmed/36380746 http://dx.doi.org/10.1016/j.bioactmat.2022.05.034 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Yao, Xiangyun
Zhan, Lei
Yan, Zhiwen
Li, Juehong
Kong, Lingchi
Wang, Xu
Xiao, Huimin
Jiang, Huiquan
Huang, Chen
Ouyang, Yuanming
Qian, Yun
Fan, Cunyi
Non-electric bioelectrical analog strategy by a biophysical-driven nano-micro spatial anisotropic scaffold for regulating stem cell niche and tissue regeneration in a neuronal therapy
title Non-electric bioelectrical analog strategy by a biophysical-driven nano-micro spatial anisotropic scaffold for regulating stem cell niche and tissue regeneration in a neuronal therapy
title_full Non-electric bioelectrical analog strategy by a biophysical-driven nano-micro spatial anisotropic scaffold for regulating stem cell niche and tissue regeneration in a neuronal therapy
title_fullStr Non-electric bioelectrical analog strategy by a biophysical-driven nano-micro spatial anisotropic scaffold for regulating stem cell niche and tissue regeneration in a neuronal therapy
title_full_unstemmed Non-electric bioelectrical analog strategy by a biophysical-driven nano-micro spatial anisotropic scaffold for regulating stem cell niche and tissue regeneration in a neuronal therapy
title_short Non-electric bioelectrical analog strategy by a biophysical-driven nano-micro spatial anisotropic scaffold for regulating stem cell niche and tissue regeneration in a neuronal therapy
title_sort non-electric bioelectrical analog strategy by a biophysical-driven nano-micro spatial anisotropic scaffold for regulating stem cell niche and tissue regeneration in a neuronal therapy
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9640298/
https://www.ncbi.nlm.nih.gov/pubmed/36380746
http://dx.doi.org/10.1016/j.bioactmat.2022.05.034
work_keys_str_mv AT yaoxiangyun nonelectricbioelectricalanalogstrategybyabiophysicaldrivennanomicrospatialanisotropicscaffoldforregulatingstemcellnicheandtissueregenerationinaneuronaltherapy
AT zhanlei nonelectricbioelectricalanalogstrategybyabiophysicaldrivennanomicrospatialanisotropicscaffoldforregulatingstemcellnicheandtissueregenerationinaneuronaltherapy
AT yanzhiwen nonelectricbioelectricalanalogstrategybyabiophysicaldrivennanomicrospatialanisotropicscaffoldforregulatingstemcellnicheandtissueregenerationinaneuronaltherapy
AT lijuehong nonelectricbioelectricalanalogstrategybyabiophysicaldrivennanomicrospatialanisotropicscaffoldforregulatingstemcellnicheandtissueregenerationinaneuronaltherapy
AT konglingchi nonelectricbioelectricalanalogstrategybyabiophysicaldrivennanomicrospatialanisotropicscaffoldforregulatingstemcellnicheandtissueregenerationinaneuronaltherapy
AT wangxu nonelectricbioelectricalanalogstrategybyabiophysicaldrivennanomicrospatialanisotropicscaffoldforregulatingstemcellnicheandtissueregenerationinaneuronaltherapy
AT xiaohuimin nonelectricbioelectricalanalogstrategybyabiophysicaldrivennanomicrospatialanisotropicscaffoldforregulatingstemcellnicheandtissueregenerationinaneuronaltherapy
AT jianghuiquan nonelectricbioelectricalanalogstrategybyabiophysicaldrivennanomicrospatialanisotropicscaffoldforregulatingstemcellnicheandtissueregenerationinaneuronaltherapy
AT huangchen nonelectricbioelectricalanalogstrategybyabiophysicaldrivennanomicrospatialanisotropicscaffoldforregulatingstemcellnicheandtissueregenerationinaneuronaltherapy
AT ouyangyuanming nonelectricbioelectricalanalogstrategybyabiophysicaldrivennanomicrospatialanisotropicscaffoldforregulatingstemcellnicheandtissueregenerationinaneuronaltherapy
AT qianyun nonelectricbioelectricalanalogstrategybyabiophysicaldrivennanomicrospatialanisotropicscaffoldforregulatingstemcellnicheandtissueregenerationinaneuronaltherapy
AT fancunyi nonelectricbioelectricalanalogstrategybyabiophysicaldrivennanomicrospatialanisotropicscaffoldforregulatingstemcellnicheandtissueregenerationinaneuronaltherapy