Cargando…
Zinc-doped Prussian blue nanoparticles for mutp53-carrying tumor ion interference and photothermal therapy
Quite a great proportion of known tumor cells carry mutation in TP53 gene, expressing mutant p53 proteins (mutp53) missing not only original genome protective activities but also acquiring gain-of-functions that favor tumor progression and impede treatment of cancers. Zinc ions were reported as agen...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Shenyang Pharmaceutical University
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9640366/ https://www.ncbi.nlm.nih.gov/pubmed/36382302 http://dx.doi.org/10.1016/j.ajps.2022.07.003 |
Sumario: | Quite a great proportion of known tumor cells carry mutation in TP53 gene, expressing mutant p53 proteins (mutp53) missing not only original genome protective activities but also acquiring gain-of-functions that favor tumor progression and impede treatment of cancers. Zinc ions were reported as agents cytocidal to mutp53-carrying cells by recovering p53 normal functions and abrogating mutp53. Meanwhile in a hyperthermia scenario, the function of wild type p53 is required to ablate tumors upon heat treatment hence the effects might be hindered in a mutp53 background. We herein synthesized zinc-doped Prussian blue (ZP) nanoparticles (NPs) to combine Zn(2+) based and photothermal therapeutic effects. An efficient release of Zn(2+) in a glutathione-enriched tumor intracellular microenvironment and a prominent photothermal conversion manifested ZP NPs as zinc ion carriers and photothermal agents. Apoptotic death and autophagic mutp53 elimination were found to be induced by ZP NPs in R280K mutp53-containing MDA-MB-231 cells and hyperthermia was rendered to ameliorate the treatment in vitro through further mutp53 elimination and increased cell death. The combinatorial therapeutic effect was also confirmed in vivo in a mouse model. This study might expand zinc delivery carriers and shed a light on potential interplay of hyperthermia and mutp53 degradation in cancer treatment. |
---|