Cargando…
Bayesian deep learning for error estimation in the analysis of anomalous diffusion
Modern single-particle-tracking techniques produce extensive time-series of diffusive motion in a wide variety of systems, from single-molecule motion in living-cells to movement ecology. The quest is to decipher the physical mechanisms encoded in the data and thus to better understand the probed sy...
Autores principales: | Seckler, Henrik, Metzler, Ralf |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9640593/ https://www.ncbi.nlm.nih.gov/pubmed/36344559 http://dx.doi.org/10.1038/s41467-022-34305-6 |
Ejemplares similares
-
Author Correction: Bayesian deep learning for error estimation in the analysis of anomalous diffusion
por: Seckler, Henrik, et al.
Publicado: (2023) -
Quantifying non-ergodicity of anomalous diffusion with higher order moments
por: Schwarzl, Maria, et al.
Publicado: (2017) -
Estimating the anomalous diffusion exponent for single particle tracking data with measurement errors - An alternative approach
por: Burnecki, Krzysztof, et al.
Publicado: (2015) -
Underdamped scaled Brownian motion: (non-)existence of the overdamped limit in anomalous diffusion
por: Bodrova, Anna S., et al.
Publicado: (2016) -
Detection of Anomalous Diffusion with Deep Residual Networks
por: Gajowczyk, Miłosz, et al.
Publicado: (2021)