Cargando…
Surgical procedure long terms recognition from Chinese literature incorporating structural feature
With rapid development of technologies in medical diagnosis and treatment, the novel and complicated concepts and usages of clinical terms especially of surgical procedures have become common in daily routine. Expected to be performed in an operating room and accompanied by an incision based on expe...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9640963/ https://www.ncbi.nlm.nih.gov/pubmed/36387477 http://dx.doi.org/10.1016/j.heliyon.2022.e11291 |
_version_ | 1784825983285592064 |
---|---|
author | Jiale, Nan Gao, Dongping Sun, Yuanyuan Li, Xiaoying Shen, Xifeng Li, Meiting Zhang, Weining Ren, Huiling Qin, Yi |
author_facet | Jiale, Nan Gao, Dongping Sun, Yuanyuan Li, Xiaoying Shen, Xifeng Li, Meiting Zhang, Weining Ren, Huiling Qin, Yi |
author_sort | Jiale, Nan |
collection | PubMed |
description | With rapid development of technologies in medical diagnosis and treatment, the novel and complicated concepts and usages of clinical terms especially of surgical procedures have become common in daily routine. Expected to be performed in an operating room and accompanied by an incision based on expert discretion, surgical procedures imply clinical understanding of diagnosis, examination, testing, equipment, drugs and symptoms, etc., but terms expressing surgical procedures are difficult to recognize since the terms are highly distinctive due to long morphological length and complex linguistics phenomena. To achieve higher recognition performance and overcome the challenge of the absence of natural delimiters in Chinese sentences, we propose a Named Entity Recognition (NER) model named Structural-SoftLexicon-Bi-LSTM-CRF (SSBC) empowered by pre-trained model BERT. In particular, we pre-trained a lexicon embedding over large-scale medical corpus to better leverage domain-specific structural knowledge. With input additionally augmented by BERT, rich multigranular information and structural term information is transferred from Structural-SoftLexicon to downstream model Bi-LSTM-CRF. Therefore, we could get a global optimal prediction of input sequence. We evaluate our model on a self-built corpus and results show that SSBC with pre-trained model outperforms other state-of-the-art benchmarks, surpassing at most 3.77% in F1 score. This study hopefully would benefit Diagnostic Related Groups (DRGs) and Diagnosis Intervention Package (DIP) grouping system, medical records statistics and analysis, Medicare payment system, etc. |
format | Online Article Text |
id | pubmed-9640963 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-96409632022-11-15 Surgical procedure long terms recognition from Chinese literature incorporating structural feature Jiale, Nan Gao, Dongping Sun, Yuanyuan Li, Xiaoying Shen, Xifeng Li, Meiting Zhang, Weining Ren, Huiling Qin, Yi Heliyon Research Article With rapid development of technologies in medical diagnosis and treatment, the novel and complicated concepts and usages of clinical terms especially of surgical procedures have become common in daily routine. Expected to be performed in an operating room and accompanied by an incision based on expert discretion, surgical procedures imply clinical understanding of diagnosis, examination, testing, equipment, drugs and symptoms, etc., but terms expressing surgical procedures are difficult to recognize since the terms are highly distinctive due to long morphological length and complex linguistics phenomena. To achieve higher recognition performance and overcome the challenge of the absence of natural delimiters in Chinese sentences, we propose a Named Entity Recognition (NER) model named Structural-SoftLexicon-Bi-LSTM-CRF (SSBC) empowered by pre-trained model BERT. In particular, we pre-trained a lexicon embedding over large-scale medical corpus to better leverage domain-specific structural knowledge. With input additionally augmented by BERT, rich multigranular information and structural term information is transferred from Structural-SoftLexicon to downstream model Bi-LSTM-CRF. Therefore, we could get a global optimal prediction of input sequence. We evaluate our model on a self-built corpus and results show that SSBC with pre-trained model outperforms other state-of-the-art benchmarks, surpassing at most 3.77% in F1 score. This study hopefully would benefit Diagnostic Related Groups (DRGs) and Diagnosis Intervention Package (DIP) grouping system, medical records statistics and analysis, Medicare payment system, etc. Elsevier 2022-10-29 /pmc/articles/PMC9640963/ /pubmed/36387477 http://dx.doi.org/10.1016/j.heliyon.2022.e11291 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Article Jiale, Nan Gao, Dongping Sun, Yuanyuan Li, Xiaoying Shen, Xifeng Li, Meiting Zhang, Weining Ren, Huiling Qin, Yi Surgical procedure long terms recognition from Chinese literature incorporating structural feature |
title | Surgical procedure long terms recognition from Chinese literature incorporating structural feature |
title_full | Surgical procedure long terms recognition from Chinese literature incorporating structural feature |
title_fullStr | Surgical procedure long terms recognition from Chinese literature incorporating structural feature |
title_full_unstemmed | Surgical procedure long terms recognition from Chinese literature incorporating structural feature |
title_short | Surgical procedure long terms recognition from Chinese literature incorporating structural feature |
title_sort | surgical procedure long terms recognition from chinese literature incorporating structural feature |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9640963/ https://www.ncbi.nlm.nih.gov/pubmed/36387477 http://dx.doi.org/10.1016/j.heliyon.2022.e11291 |
work_keys_str_mv | AT jialenan surgicalprocedurelongtermsrecognitionfromchineseliteratureincorporatingstructuralfeature AT gaodongping surgicalprocedurelongtermsrecognitionfromchineseliteratureincorporatingstructuralfeature AT sunyuanyuan surgicalprocedurelongtermsrecognitionfromchineseliteratureincorporatingstructuralfeature AT lixiaoying surgicalprocedurelongtermsrecognitionfromchineseliteratureincorporatingstructuralfeature AT shenxifeng surgicalprocedurelongtermsrecognitionfromchineseliteratureincorporatingstructuralfeature AT limeiting surgicalprocedurelongtermsrecognitionfromchineseliteratureincorporatingstructuralfeature AT zhangweining surgicalprocedurelongtermsrecognitionfromchineseliteratureincorporatingstructuralfeature AT renhuiling surgicalprocedurelongtermsrecognitionfromchineseliteratureincorporatingstructuralfeature AT qinyi surgicalprocedurelongtermsrecognitionfromchineseliteratureincorporatingstructuralfeature |