Cargando…

Lipoprotein profiles of fat distribution and its association with insulin sensitivity

BACKGROUND: Fat deposition is associated with adverse outcomes. Waist-to-hip (WHR) ratio is a simple feasible index to assess fat distribution. Lipoprotein particle composition in relation to WHR and to what extent their association is mediated by insulin sensitivity are less investigated. METHODS:...

Descripción completa

Detalles Bibliográficos
Autores principales: Wei, Dongmei, Marrachelli, Vannina González, Melgarejo, Jesus D., Liao, Chia-Te, Janssens, Stefan, Verhamme, Peter, Vanassche, Thomas, Van Aelst, Lucas, Monleon, Daniel, Redón, Josep, Zhang, Zhen-Yu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9640977/
https://www.ncbi.nlm.nih.gov/pubmed/36387872
http://dx.doi.org/10.3389/fendo.2022.978745
Descripción
Sumario:BACKGROUND: Fat deposition is associated with adverse outcomes. Waist-to-hip (WHR) ratio is a simple feasible index to assess fat distribution. Lipoprotein particle composition in relation to WHR and to what extent their association is mediated by insulin sensitivity are less investigated. METHODS: In 504 randomly recruited Flemish (mean age: 48.9 years; women: 51.6%), we analyzed the lipoprotein particle constitutions using nuclear magnetic resonance spectroscopy. WHR obesity described a WHR of ≥ 0.85 for women or 0.9 for men. Insulin sensitivity was evaluated by the homeostasis model assessment-estimated insulin resistance (HOMA-IR). SCORE-2 risk algorithm was applied to estimate 10-year cardiovascular risk. Statistical methods included multivariable-adjusted linear regression analysis, logistic regression analysis, and mediation analysis. RESULTS: The prevalence of WHR obesity was 54.6%, approximately 3 times of BMI-determined obesity (19.1%). Individuals with WHR obesity had significantly higher metabolic complications, such as hypertension (57.1%), dyslipidemia (61.8%), and insulin resistance (14.2%). WHR and WHR obesity were positively associated with total very-low-density lipoprotein (VLDL) particle concentration, remnant cholesterol, and triglycerides, but were negatively associated with VLDL particle size (P ≤ 0.027), independent of body mass index and other covariates. WHR was inversely associated with total high-density lipoprotein (HDL) particle concentration, whereas WHR obesity was inversely associated with HDL cholesterol (P ≤ 0.039). Neither WHR nor WHR obesity was associated with the concentration of total low-density lipoprotein (LDL) particles, LDL particle size, and LDL cholesterol (P ≥ 0.089). In the mediation analysis, insulin sensitivity significantly mediated the effect of WHR on total VLDL particle concentration (mediation percentage: 37.0%), remnant cholesterol (47.7%), and HDL cholesterol (41.1%). Individuals with WHR obesity were at increased cardiovascular risk, regardless of LDL cholesterol (P ≤0.028). In WHR obesity, higher total VLDL particle concent36ration and remnant cholesterol, and lower HDL cholesterol were associated with an increased cardiovascular risk (P≤ 0.002). CONCLUSIONS: Upper-body fat deposition was independently associated with an unfavorable lipoprotein profile, and insulin sensitivity significantly mediated this association. LDL cholesterol might underestimate lipid abnormality for people with upper-body obesity and lowering VLDL particles and remnant cholesterol might potentially reduce the residual cardiovascular risk.