Cargando…
Stratification of malignant renal neoplasms from cystic renal lesions using deep learning and radiomics features based on a stacking ensemble CT machine learning algorithm
Using nephrographic phase CT images combined with pathology diagnosis, we aim to develop and validate a fusion feature-based stacking ensemble machine learning model to distinguish malignant renal neoplasms from cystic renal lesions (CRLs). This retrospective research includes 166 individuals with C...
Autores principales: | He, Quan-Hao, Tan, Hao, Liao, Fang-Tong, Zheng, Yi-Neng, Lv, Fa-Jin, Jiang, Qing, Xiao, Ming-Zhao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9640984/ https://www.ncbi.nlm.nih.gov/pubmed/36387261 http://dx.doi.org/10.3389/fonc.2022.1028577 |
Ejemplares similares
-
Deep learning and radiomic feature-based blending ensemble classifier for malignancy risk prediction in cystic renal lesions
por: He, Quan-Hao, et al.
Publicado: (2023) -
An R package for ensemble learning stacking
por: Nukui, Taichi, et al.
Publicado: (2023) -
CT and MR imaging of cystic renal lesions
por: Agnello, Francesco, et al.
Publicado: (2020) -
Classification prediction of pancreatic cystic neoplasms based on radiomics deep learning models
por: Liang, Wenjie, et al.
Publicado: (2022) -
Multi-Phase CT-Based Radiomics Nomogram for Discrimination Between Pancreatic Serous Cystic Neoplasm From Mucinous Cystic Neoplasm
por: Gao, Jiahao, et al.
Publicado: (2021)