Cargando…
Nondestructive microbial discrimination using single-cell Raman spectra and random forest machine learning algorithm
Raman microspectroscopy is a powerful tool for obtaining biomolecular information from single microbial cells in a nondestructive manner. Here, we detail steps to discriminate prokaryotic species using single-cell Raman spectra acquisitions followed by data preprocessing and random forest model tuni...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9641085/ https://www.ncbi.nlm.nih.gov/pubmed/36386892 http://dx.doi.org/10.1016/j.xpro.2022.101812 |
_version_ | 1784826014937907200 |
---|---|
author | Kanno, Nanako Kato, Shingo Ohkuma, Moriya Matsui, Motomu Iwasaki, Wataru Shigeto, Shinsuke |
author_facet | Kanno, Nanako Kato, Shingo Ohkuma, Moriya Matsui, Motomu Iwasaki, Wataru Shigeto, Shinsuke |
author_sort | Kanno, Nanako |
collection | PubMed |
description | Raman microspectroscopy is a powerful tool for obtaining biomolecular information from single microbial cells in a nondestructive manner. Here, we detail steps to discriminate prokaryotic species using single-cell Raman spectra acquisitions followed by data preprocessing and random forest model tuning. In addition, we describe the steps required to evaluate the model. This protocol requires minimal preprocessing of Raman spectral data, making it accessible to non-spectroscopists, yet allows intuitive visualization of feature importance. For complete details on the use and execution of this protocol, please refer to Kanno et al. (2021). |
format | Online Article Text |
id | pubmed-9641085 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-96410852022-11-15 Nondestructive microbial discrimination using single-cell Raman spectra and random forest machine learning algorithm Kanno, Nanako Kato, Shingo Ohkuma, Moriya Matsui, Motomu Iwasaki, Wataru Shigeto, Shinsuke STAR Protoc Protocol Raman microspectroscopy is a powerful tool for obtaining biomolecular information from single microbial cells in a nondestructive manner. Here, we detail steps to discriminate prokaryotic species using single-cell Raman spectra acquisitions followed by data preprocessing and random forest model tuning. In addition, we describe the steps required to evaluate the model. This protocol requires minimal preprocessing of Raman spectral data, making it accessible to non-spectroscopists, yet allows intuitive visualization of feature importance. For complete details on the use and execution of this protocol, please refer to Kanno et al. (2021). Elsevier 2022-11-03 /pmc/articles/PMC9641085/ /pubmed/36386892 http://dx.doi.org/10.1016/j.xpro.2022.101812 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Protocol Kanno, Nanako Kato, Shingo Ohkuma, Moriya Matsui, Motomu Iwasaki, Wataru Shigeto, Shinsuke Nondestructive microbial discrimination using single-cell Raman spectra and random forest machine learning algorithm |
title | Nondestructive microbial discrimination using single-cell Raman spectra and random forest machine learning algorithm |
title_full | Nondestructive microbial discrimination using single-cell Raman spectra and random forest machine learning algorithm |
title_fullStr | Nondestructive microbial discrimination using single-cell Raman spectra and random forest machine learning algorithm |
title_full_unstemmed | Nondestructive microbial discrimination using single-cell Raman spectra and random forest machine learning algorithm |
title_short | Nondestructive microbial discrimination using single-cell Raman spectra and random forest machine learning algorithm |
title_sort | nondestructive microbial discrimination using single-cell raman spectra and random forest machine learning algorithm |
topic | Protocol |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9641085/ https://www.ncbi.nlm.nih.gov/pubmed/36386892 http://dx.doi.org/10.1016/j.xpro.2022.101812 |
work_keys_str_mv | AT kannonanako nondestructivemicrobialdiscriminationusingsinglecellramanspectraandrandomforestmachinelearningalgorithm AT katoshingo nondestructivemicrobialdiscriminationusingsinglecellramanspectraandrandomforestmachinelearningalgorithm AT ohkumamoriya nondestructivemicrobialdiscriminationusingsinglecellramanspectraandrandomforestmachinelearningalgorithm AT matsuimotomu nondestructivemicrobialdiscriminationusingsinglecellramanspectraandrandomforestmachinelearningalgorithm AT iwasakiwataru nondestructivemicrobialdiscriminationusingsinglecellramanspectraandrandomforestmachinelearningalgorithm AT shigetoshinsuke nondestructivemicrobialdiscriminationusingsinglecellramanspectraandrandomforestmachinelearningalgorithm |