Cargando…

Nondestructive microbial discrimination using single-cell Raman spectra and random forest machine learning algorithm

Raman microspectroscopy is a powerful tool for obtaining biomolecular information from single microbial cells in a nondestructive manner. Here, we detail steps to discriminate prokaryotic species using single-cell Raman spectra acquisitions followed by data preprocessing and random forest model tuni...

Descripción completa

Detalles Bibliográficos
Autores principales: Kanno, Nanako, Kato, Shingo, Ohkuma, Moriya, Matsui, Motomu, Iwasaki, Wataru, Shigeto, Shinsuke
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9641085/
https://www.ncbi.nlm.nih.gov/pubmed/36386892
http://dx.doi.org/10.1016/j.xpro.2022.101812
_version_ 1784826014937907200
author Kanno, Nanako
Kato, Shingo
Ohkuma, Moriya
Matsui, Motomu
Iwasaki, Wataru
Shigeto, Shinsuke
author_facet Kanno, Nanako
Kato, Shingo
Ohkuma, Moriya
Matsui, Motomu
Iwasaki, Wataru
Shigeto, Shinsuke
author_sort Kanno, Nanako
collection PubMed
description Raman microspectroscopy is a powerful tool for obtaining biomolecular information from single microbial cells in a nondestructive manner. Here, we detail steps to discriminate prokaryotic species using single-cell Raman spectra acquisitions followed by data preprocessing and random forest model tuning. In addition, we describe the steps required to evaluate the model. This protocol requires minimal preprocessing of Raman spectral data, making it accessible to non-spectroscopists, yet allows intuitive visualization of feature importance. For complete details on the use and execution of this protocol, please refer to Kanno et al. (2021).
format Online
Article
Text
id pubmed-9641085
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-96410852022-11-15 Nondestructive microbial discrimination using single-cell Raman spectra and random forest machine learning algorithm Kanno, Nanako Kato, Shingo Ohkuma, Moriya Matsui, Motomu Iwasaki, Wataru Shigeto, Shinsuke STAR Protoc Protocol Raman microspectroscopy is a powerful tool for obtaining biomolecular information from single microbial cells in a nondestructive manner. Here, we detail steps to discriminate prokaryotic species using single-cell Raman spectra acquisitions followed by data preprocessing and random forest model tuning. In addition, we describe the steps required to evaluate the model. This protocol requires minimal preprocessing of Raman spectral data, making it accessible to non-spectroscopists, yet allows intuitive visualization of feature importance. For complete details on the use and execution of this protocol, please refer to Kanno et al. (2021). Elsevier 2022-11-03 /pmc/articles/PMC9641085/ /pubmed/36386892 http://dx.doi.org/10.1016/j.xpro.2022.101812 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Protocol
Kanno, Nanako
Kato, Shingo
Ohkuma, Moriya
Matsui, Motomu
Iwasaki, Wataru
Shigeto, Shinsuke
Nondestructive microbial discrimination using single-cell Raman spectra and random forest machine learning algorithm
title Nondestructive microbial discrimination using single-cell Raman spectra and random forest machine learning algorithm
title_full Nondestructive microbial discrimination using single-cell Raman spectra and random forest machine learning algorithm
title_fullStr Nondestructive microbial discrimination using single-cell Raman spectra and random forest machine learning algorithm
title_full_unstemmed Nondestructive microbial discrimination using single-cell Raman spectra and random forest machine learning algorithm
title_short Nondestructive microbial discrimination using single-cell Raman spectra and random forest machine learning algorithm
title_sort nondestructive microbial discrimination using single-cell raman spectra and random forest machine learning algorithm
topic Protocol
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9641085/
https://www.ncbi.nlm.nih.gov/pubmed/36386892
http://dx.doi.org/10.1016/j.xpro.2022.101812
work_keys_str_mv AT kannonanako nondestructivemicrobialdiscriminationusingsinglecellramanspectraandrandomforestmachinelearningalgorithm
AT katoshingo nondestructivemicrobialdiscriminationusingsinglecellramanspectraandrandomforestmachinelearningalgorithm
AT ohkumamoriya nondestructivemicrobialdiscriminationusingsinglecellramanspectraandrandomforestmachinelearningalgorithm
AT matsuimotomu nondestructivemicrobialdiscriminationusingsinglecellramanspectraandrandomforestmachinelearningalgorithm
AT iwasakiwataru nondestructivemicrobialdiscriminationusingsinglecellramanspectraandrandomforestmachinelearningalgorithm
AT shigetoshinsuke nondestructivemicrobialdiscriminationusingsinglecellramanspectraandrandomforestmachinelearningalgorithm