Cargando…
Utilization of model-agnostic explainable artificial intelligence frameworks in oncology: a narrative review
BACKGROUND AND OBJECTIVE: Machine learning (ML) models are increasingly being utilized in oncology research for use in the clinic. However, while more complicated models may provide improvements in predictive or prognostic power, a hurdle to their adoption are limits of model interpretability, where...
Autores principales: | Ladbury, Colton, Zarinshenas, Reza, Semwal, Hemal, Tam, Andrew, Vaidehi, Nagarajan, Rodin, Andrei S., Liu, An, Glaser, Scott, Salgia, Ravi, Amini, Arya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9641128/ https://www.ncbi.nlm.nih.gov/pubmed/36388027 http://dx.doi.org/10.21037/tcr-22-1626 |
Ejemplares similares
-
Assessment of Barriers and Challenges to Screening, Diagnosis, and Biomarker Testing in Early-Stage Lung Cancer
por: Zarinshenas, Reza, et al.
Publicado: (2023) -
Integration of artificial intelligence in lung cancer: Rise of the machine
por: Ladbury, Colton, et al.
Publicado: (2023) -
Current landscape of radiation oncology in esophageal cancer: a narrative review
por: Liu, Jason, et al.
Publicado: (2022) -
Beauty is in the explainable artificial intelligence (XAI) of the “agnostic” beholder
por: Laios, Alexandros, et al.
Publicado: (2023) -
Clinical Applications of Magnetic Resonance-Guided Radiotherapy: A Narrative Review
por: Ladbury, Colton, et al.
Publicado: (2023)