Cargando…
Development of a Super-Resolution Scheme for Pediatric Magnetic Resonance Brain Imaging Through Convolutional Neural Networks
Pediatric medical imaging represents a real challenge for physicians, as children who are patients often move during the examination, and it causes the appearance of different artifacts in the images. Thus, it is not possible to obtain good quality images for this target population limiting the poss...
Autores principales: | Molina-Maza, Juan Manuel, Galiana-Bordera, Adrian, Jimenez, Mar, Malpica, Norberto, Torrado-Carvajal, Angel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9641213/ https://www.ncbi.nlm.nih.gov/pubmed/36389232 http://dx.doi.org/10.3389/fnins.2022.830143 |
Ejemplares similares
-
Super-Resolution Ultrasound Imaging Scheme Based on a Symmetric Series Convolutional Neural Network
por: Tamang, Lakpa Dorje, et al.
Publicado: (2022) -
Instant multicolor super-resolution microscopy with deep convolutional neural network
por: Wang, Songyue, et al.
Publicado: (2021) -
Super-resolution recurrent convolutional neural networks for learning with multi-resolution whole slide images
por: Mukherjee, Lopamudra, et al.
Publicado: (2019) -
Sparse convolutional neural network for high-resolution skull shape completion and shape super-resolution
por: Li, Jianning, et al.
Publicado: (2023) -
Super-Resolution for Improving EEG Spatial Resolution using Deep Convolutional Neural Network—Feasibility Study
por: Kwon, Moonyoung, et al.
Publicado: (2019)