Cargando…
Performance analysis of U-Net with hybrid loss for foreground detection
With the latest developments in deep neural networks, the convolutional neural network (CNN) has made considerable progress in the area of foreground detection. However, the top-rank background subtraction algorithms for foreground detection still have many shortcomings. It is challenging to extract...
Autores principales: | Kalsotra, Rudrika, Arora, Sakshi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9641683/ https://www.ncbi.nlm.nih.gov/pubmed/36406901 http://dx.doi.org/10.1007/s00530-022-01014-5 |
Ejemplares similares
-
Fusion Attention Mechanism for Foreground Detection Based on Multiscale U-Net Architecture
por: Liu, Peng, et al.
Publicado: (2022) -
White matter hyperintensities segmentation using the ensemble U-Net with multi-scale highlighting foregrounds
por: Park, Gilsoon, et al.
Publicado: (2021) -
Foreground Detection Based on Superpixel and Semantic Segmentation
por: Feng, Junying, et al.
Publicado: (2022) -
Background modeling and foreground detection for video surveillance
por: Bouwmans, Thierry, et al.
Publicado: (2015) -
Corner-Point and Foreground-Area IoU Loss: Better Localization of Small Objects in Bounding Box Regression
por: Cai, Delong, et al.
Publicado: (2023)