Cargando…

Theoretical basis and technical path for the regional all-for-one customization model of black soil granary

The black soil area in Northeast China serves as a “ballast” to ensure China’s food security. Unreasonable development and utilization lead to serious black soil degradation in some areas and affect regional food production and economic and social development. In the context of the intensification o...

Descripción completa

Detalles Bibliográficos
Autores principales: Liao, Xiaoyong, Yao, Qixing, Wan, Xiaoming, Wang, Jieyong, Li, Zehong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Science Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9641686/
http://dx.doi.org/10.1007/s11442-022-2041-2
_version_ 1784826134935896064
author Liao, Xiaoyong
Yao, Qixing
Wan, Xiaoming
Wang, Jieyong
Li, Zehong
author_facet Liao, Xiaoyong
Yao, Qixing
Wan, Xiaoming
Wang, Jieyong
Li, Zehong
author_sort Liao, Xiaoyong
collection PubMed
description The black soil area in Northeast China serves as a “ballast” to ensure China’s food security. Unreasonable development and utilization lead to serious black soil degradation in some areas and affect regional food production and economic and social development. In the context of the intensification of the contradiction between food supply and demand worldwide, we should pay more attention to the overall situation of regional sustainable development and seek for systematic, scientific, and economic solutions. This study establishes a regional all-for-one customization model of black soil granary on the basis of the regional system of human—land relationship, customized and accurate management, agricultural system theory, and agricultural informatization with the guidance of integrated geography concept. The aim of this regional all-for-one customization model is to systematically diagnose the key problems and leading factors of black soil degradation and determine a solution that combines the commonness and individuality of black soil protection from the perspective of multiscale linkage, multifactor coupling, and multitechnology cooperation. The regional all-for-one customization model of black soil granary integrates the two perspectives of “regional” and “customization” into the protection and comprehensive utilization of black soil for the first time. It adopts zoning, grading, and classification as the main strategy and big data and artificial intelligence as the main technical approaches. This model constructs three strategies of different scales by combining the “satellite—air—ground—network” 3D monitoring system and the all-for-one customization platform driven by big data and artificial intelligence. First, the “implementing strategies by regions” are implemented at the regional scale to formulate the regional agricultural resource allocation scheme and agricultural zoning, which can provide strategies to protect and utilize black soil effectively. Second, the “determining strategies in accordance with villages” are implemented at the village scale to formulate a black soil protection and utilization model for different categories of villages, which can promote the organic integration of black soil protection and rural revitalization. Third, a “one strategy for one field” concept is applied at the field scale to provide accurate strategies for soil restoration and yield improvement in a fixed, quantitative, and regular manner. Multiscale integrated demonstration and scheme verification of the regional all-for-one customization model of black soil granary are conducted in Qiqihar City at three scales, namely, region, village, and field, to solve the key issues in black soil protection and utilization and form a replicable and popularized system solution, thereby providing a model for the sustainable development of Chinese and global black soil agriculture. The proposed regional all-for-one customization model of black soil granary has important theoretical and practical value in promoting the high-quality development of regional agriculture and rural revitalization, and provides a demonstration model of land protection and utilization for the black soil area in China and the whole world.
format Online
Article
Text
id pubmed-9641686
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Science Press
record_format MEDLINE/PubMed
spelling pubmed-96416862022-11-14 Theoretical basis and technical path for the regional all-for-one customization model of black soil granary Liao, Xiaoyong Yao, Qixing Wan, Xiaoming Wang, Jieyong Li, Zehong J. Geogr. Sci. Research Articles The black soil area in Northeast China serves as a “ballast” to ensure China’s food security. Unreasonable development and utilization lead to serious black soil degradation in some areas and affect regional food production and economic and social development. In the context of the intensification of the contradiction between food supply and demand worldwide, we should pay more attention to the overall situation of regional sustainable development and seek for systematic, scientific, and economic solutions. This study establishes a regional all-for-one customization model of black soil granary on the basis of the regional system of human—land relationship, customized and accurate management, agricultural system theory, and agricultural informatization with the guidance of integrated geography concept. The aim of this regional all-for-one customization model is to systematically diagnose the key problems and leading factors of black soil degradation and determine a solution that combines the commonness and individuality of black soil protection from the perspective of multiscale linkage, multifactor coupling, and multitechnology cooperation. The regional all-for-one customization model of black soil granary integrates the two perspectives of “regional” and “customization” into the protection and comprehensive utilization of black soil for the first time. It adopts zoning, grading, and classification as the main strategy and big data and artificial intelligence as the main technical approaches. This model constructs three strategies of different scales by combining the “satellite—air—ground—network” 3D monitoring system and the all-for-one customization platform driven by big data and artificial intelligence. First, the “implementing strategies by regions” are implemented at the regional scale to formulate the regional agricultural resource allocation scheme and agricultural zoning, which can provide strategies to protect and utilize black soil effectively. Second, the “determining strategies in accordance with villages” are implemented at the village scale to formulate a black soil protection and utilization model for different categories of villages, which can promote the organic integration of black soil protection and rural revitalization. Third, a “one strategy for one field” concept is applied at the field scale to provide accurate strategies for soil restoration and yield improvement in a fixed, quantitative, and regular manner. Multiscale integrated demonstration and scheme verification of the regional all-for-one customization model of black soil granary are conducted in Qiqihar City at three scales, namely, region, village, and field, to solve the key issues in black soil protection and utilization and form a replicable and popularized system solution, thereby providing a model for the sustainable development of Chinese and global black soil agriculture. The proposed regional all-for-one customization model of black soil granary has important theoretical and practical value in promoting the high-quality development of regional agriculture and rural revitalization, and provides a demonstration model of land protection and utilization for the black soil area in China and the whole world. Science Press 2022-11-08 2022 /pmc/articles/PMC9641686/ http://dx.doi.org/10.1007/s11442-022-2041-2 Text en © Science in China Press 2022 This article is made available via the PMC Open Access Subset for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.
spellingShingle Research Articles
Liao, Xiaoyong
Yao, Qixing
Wan, Xiaoming
Wang, Jieyong
Li, Zehong
Theoretical basis and technical path for the regional all-for-one customization model of black soil granary
title Theoretical basis and technical path for the regional all-for-one customization model of black soil granary
title_full Theoretical basis and technical path for the regional all-for-one customization model of black soil granary
title_fullStr Theoretical basis and technical path for the regional all-for-one customization model of black soil granary
title_full_unstemmed Theoretical basis and technical path for the regional all-for-one customization model of black soil granary
title_short Theoretical basis and technical path for the regional all-for-one customization model of black soil granary
title_sort theoretical basis and technical path for the regional all-for-one customization model of black soil granary
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9641686/
http://dx.doi.org/10.1007/s11442-022-2041-2
work_keys_str_mv AT liaoxiaoyong theoreticalbasisandtechnicalpathfortheregionalallforonecustomizationmodelofblacksoilgranary
AT yaoqixing theoreticalbasisandtechnicalpathfortheregionalallforonecustomizationmodelofblacksoilgranary
AT wanxiaoming theoreticalbasisandtechnicalpathfortheregionalallforonecustomizationmodelofblacksoilgranary
AT wangjieyong theoreticalbasisandtechnicalpathfortheregionalallforonecustomizationmodelofblacksoilgranary
AT lizehong theoreticalbasisandtechnicalpathfortheregionalallforonecustomizationmodelofblacksoilgranary