Cargando…
Deep autoencoder for interpretable tissue-adaptive deconvolution and cell-type-specific gene analysis
Single-cell RNA-sequencing has become a powerful tool to study biologically significant characteristics at explicitly high resolution. However, its application on emerging data is currently limited by its intrinsic techniques. Here, we introduce Tissue-AdaPtive autoEncoder (TAPE), a deep learning me...
Autores principales: | Chen, Yanshuo, Wang, Yixuan, Chen, Yuelong, Cheng, Yuqi, Wei, Yumeng, Li, Yunxiang, Wang, Jiuming, Wei, Yingying, Chan, Ting-Fung, Li, Yu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9641692/ https://www.ncbi.nlm.nih.gov/pubmed/36347853 http://dx.doi.org/10.1038/s41467-022-34550-9 |
Ejemplares similares
-
AcrNET: predicting anti-CRISPR with deep learning
por: Li, Yunxiang, et al.
Publicado: (2023) -
Deep Convolutional Neural Network with Deconvolution
and a Deep Autoencoder for Fault Detection and Diagnosis
por: Kanno, Yasuhiro, et al.
Publicado: (2022) -
Dear-DIA(XMBD): Deep Autoencoder Enables Deconvolution of Data-Independent Acquisition Proteomics
por: He, Qingzu, et al.
Publicado: (2023) -
Deep autoencoder based domain adaptation for transfer learning
por: Dev, Krishna, et al.
Publicado: (2022) -
Con-AAE: contrastive cycle adversarial autoencoders for single-cell multi-omics alignment and integration
por: Wang, Xuesong, et al.
Publicado: (2023)