Cargando…
Transformer-based multitask learning for reaction prediction under low-resource circumstances
Recently, effective and rapid deep-learning methods for predicting chemical reactions have significantly aided the research and development of organic chemistry and drug discovery. Owing to the insufficiency of related chemical reaction data, computer-assisted predictions based on low-resource chemi...
Autores principales: | Qiao, Haoran, Wu, Yejian, Zhang, Yun, Zhang, Chengyun, Wu, Xinyi, Wu, Zhipeng, Zhao, Qingjie, Wang, Xinqiao, Li, Huiyu, Duan, Hongliang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9641703/ https://www.ncbi.nlm.nih.gov/pubmed/36380947 http://dx.doi.org/10.1039/d2ra05349g |
Ejemplares similares
-
Virtual data augmentation method for reaction prediction
por: Wu, Xinyi, et al.
Publicado: (2022) -
From theory to experiment: transformer-based generation enables rapid discovery of novel reactions
por: Wang, Xinqiao, et al.
Publicado: (2022) -
Generation of novel Diels–Alder reactions using a generative adversarial network
por: Li, Sheng, et al.
Publicado: (2022) -
Networking chemical robots for reaction multitasking
por: Caramelli, Dario, et al.
Publicado: (2018) -
Preference-Matched Multitask Assignment for Group Socialization under Mobile Crowdsensing
por: Zhang, Mingyuan, et al.
Publicado: (2023)