Cargando…
Acteoside alleviates dextran sulphate sodium-induced ulcerative colitis via regulation of the HO-1/HMGB1 signaling pathway
Ulcerative colitis (UC) is a significant burden on human health, and the elucidation of the mechanism by which it develops has potential for the prevention and treatment of UC. It has been reported that acteoside (ACT) exhibits strong anti-inflammatory activity. In the present study, it was hypothes...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9641715/ https://www.ncbi.nlm.nih.gov/pubmed/36281914 http://dx.doi.org/10.3892/mmr.2022.12877 |
_version_ | 1784826143822577664 |
---|---|
author | Guo, Wenjuan Wang, Xiaodi Liu, Fang Chen, Shuo Wang, Shuai Zhang, Qingrui Yuan, Lan Du, Shiyu |
author_facet | Guo, Wenjuan Wang, Xiaodi Liu, Fang Chen, Shuo Wang, Shuai Zhang, Qingrui Yuan, Lan Du, Shiyu |
author_sort | Guo, Wenjuan |
collection | PubMed |
description | Ulcerative colitis (UC) is a significant burden on human health, and the elucidation of the mechanism by which it develops has potential for the prevention and treatment of UC. It has been reported that acteoside (ACT) exhibits strong anti-inflammatory activity. In the present study, it was hypothesized that ACT may exert a protective effect against UC. The effects of ACT on inflammation, oxidative stress and apoptosis were evaluated using dextran sulphate sodium (DSS)-treated mice and DSS-treated human colorectal adenocarcinoma Caco-2 cells, which have an epithelial morphology. The results demonstrated that the ACT-treated mice with DSS-induced UC exhibited significantly reduced colon inflammation, as demonstrated by a reversal in body weight loss, colon shortening, disease activity index score, inflammation, oxidative stress and colonic barrier dysfunction. Further in vivo experiments demonstrated that ACT inhibited DSS-induced apoptosis in colon tissues, as demonstrated by the results of the TUNEL assay and the altered protein expression levels of Bax, cleaved caspase-3 and Bcl-2. Furthermore, DSS significantly stimulated the protein expression levels of high mobility group box 1 protein (HMGB1), which serves a central role in the initiation and progression of UC, an effect which was markedly inhibited by ACT. Finally, DSS significantly decreased the protein expression levels of heme oxygenase-1 (HO-1) in colon tissues and the effect of ACT on GSH, apoptotic proteins and HMGB1 was markedly attenuated in the presence of the HO-1 inhibitor tin protoporphyrin. In conclusion, ACT ameliorated colon inflammation through HMGB1 inhibition in a HO-1-dependent manner. |
format | Online Article Text |
id | pubmed-9641715 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | D.A. Spandidos |
record_format | MEDLINE/PubMed |
spelling | pubmed-96417152022-11-22 Acteoside alleviates dextran sulphate sodium-induced ulcerative colitis via regulation of the HO-1/HMGB1 signaling pathway Guo, Wenjuan Wang, Xiaodi Liu, Fang Chen, Shuo Wang, Shuai Zhang, Qingrui Yuan, Lan Du, Shiyu Mol Med Rep Articles Ulcerative colitis (UC) is a significant burden on human health, and the elucidation of the mechanism by which it develops has potential for the prevention and treatment of UC. It has been reported that acteoside (ACT) exhibits strong anti-inflammatory activity. In the present study, it was hypothesized that ACT may exert a protective effect against UC. The effects of ACT on inflammation, oxidative stress and apoptosis were evaluated using dextran sulphate sodium (DSS)-treated mice and DSS-treated human colorectal adenocarcinoma Caco-2 cells, which have an epithelial morphology. The results demonstrated that the ACT-treated mice with DSS-induced UC exhibited significantly reduced colon inflammation, as demonstrated by a reversal in body weight loss, colon shortening, disease activity index score, inflammation, oxidative stress and colonic barrier dysfunction. Further in vivo experiments demonstrated that ACT inhibited DSS-induced apoptosis in colon tissues, as demonstrated by the results of the TUNEL assay and the altered protein expression levels of Bax, cleaved caspase-3 and Bcl-2. Furthermore, DSS significantly stimulated the protein expression levels of high mobility group box 1 protein (HMGB1), which serves a central role in the initiation and progression of UC, an effect which was markedly inhibited by ACT. Finally, DSS significantly decreased the protein expression levels of heme oxygenase-1 (HO-1) in colon tissues and the effect of ACT on GSH, apoptotic proteins and HMGB1 was markedly attenuated in the presence of the HO-1 inhibitor tin protoporphyrin. In conclusion, ACT ameliorated colon inflammation through HMGB1 inhibition in a HO-1-dependent manner. D.A. Spandidos 2022-10-21 /pmc/articles/PMC9641715/ /pubmed/36281914 http://dx.doi.org/10.3892/mmr.2022.12877 Text en Copyright: © Guo et al. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
spellingShingle | Articles Guo, Wenjuan Wang, Xiaodi Liu, Fang Chen, Shuo Wang, Shuai Zhang, Qingrui Yuan, Lan Du, Shiyu Acteoside alleviates dextran sulphate sodium-induced ulcerative colitis via regulation of the HO-1/HMGB1 signaling pathway |
title | Acteoside alleviates dextran sulphate sodium-induced ulcerative colitis via regulation of the HO-1/HMGB1 signaling pathway |
title_full | Acteoside alleviates dextran sulphate sodium-induced ulcerative colitis via regulation of the HO-1/HMGB1 signaling pathway |
title_fullStr | Acteoside alleviates dextran sulphate sodium-induced ulcerative colitis via regulation of the HO-1/HMGB1 signaling pathway |
title_full_unstemmed | Acteoside alleviates dextran sulphate sodium-induced ulcerative colitis via regulation of the HO-1/HMGB1 signaling pathway |
title_short | Acteoside alleviates dextran sulphate sodium-induced ulcerative colitis via regulation of the HO-1/HMGB1 signaling pathway |
title_sort | acteoside alleviates dextran sulphate sodium-induced ulcerative colitis via regulation of the ho-1/hmgb1 signaling pathway |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9641715/ https://www.ncbi.nlm.nih.gov/pubmed/36281914 http://dx.doi.org/10.3892/mmr.2022.12877 |
work_keys_str_mv | AT guowenjuan acteosidealleviatesdextransulphatesodiuminducedulcerativecolitisviaregulationoftheho1hmgb1signalingpathway AT wangxiaodi acteosidealleviatesdextransulphatesodiuminducedulcerativecolitisviaregulationoftheho1hmgb1signalingpathway AT liufang acteosidealleviatesdextransulphatesodiuminducedulcerativecolitisviaregulationoftheho1hmgb1signalingpathway AT chenshuo acteosidealleviatesdextransulphatesodiuminducedulcerativecolitisviaregulationoftheho1hmgb1signalingpathway AT wangshuai acteosidealleviatesdextransulphatesodiuminducedulcerativecolitisviaregulationoftheho1hmgb1signalingpathway AT zhangqingrui acteosidealleviatesdextransulphatesodiuminducedulcerativecolitisviaregulationoftheho1hmgb1signalingpathway AT yuanlan acteosidealleviatesdextransulphatesodiuminducedulcerativecolitisviaregulationoftheho1hmgb1signalingpathway AT dushiyu acteosidealleviatesdextransulphatesodiuminducedulcerativecolitisviaregulationoftheho1hmgb1signalingpathway |