Cargando…
Development of machine learning classifiers to predict compound activity on prostate cancer cell lines
Prostate cancer is the most common type of cancer in men. The disease presents good survival rates if treated at the early stages. However, the evolution of the disease in its most aggressive variant remains without effective therapeutic answers. Therefore, the identification of novel effective ther...
Autores principales: | Bonanni, Davide, Pinzi, Luca, Rastelli, Giulio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9641853/ https://www.ncbi.nlm.nih.gov/pubmed/36348374 http://dx.doi.org/10.1186/s13321-022-00647-y |
Ejemplares similares
-
Prediction of activity and selectivity profiles of human Carbonic Anhydrase inhibitors using machine learning classification models
por: Tinivella, Annachiara, et al.
Publicado: (2021) -
Hydroxamic Acid Derivatives: From Synthetic Strategies
to Medicinal Chemistry Applications
por: Citarella, Andrea, et al.
Publicado: (2021) -
Identification of Promising Drug Candidates against Prostate Cancer through Computationally-Driven Drug Repurposing
por: Bernal, Leonardo, et al.
Publicado: (2023) -
Synthesis of potent and selective HDAC6 inhibitors led to unexpected opening of a quinazoline ring
por: Moi, Davide, et al.
Publicado: (2022) -
Computational polypharmacology comes of age
por: Rastelli, Giulio, et al.
Publicado: (2015)