Cargando…
Combining novel feature selection strategy and hyperspectral vegetation indices to predict crop yield
BACKGROUND: Wheat is an important food crop globally, and timely prediction of wheat yield in breeding efforts can improve selection efficiency. Traditional yield prediction method based on secondary traits is time-consuming, costly, and destructive. It is urgent to develop innovative methods to imp...
Autores principales: | Fei, Shuaipeng, Li, Lei, Han, Zhiguo, Chen, Zhen, Xiao, Yonggui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9641855/ https://www.ncbi.nlm.nih.gov/pubmed/36344997 http://dx.doi.org/10.1186/s13007-022-00949-0 |
Ejemplares similares
-
Estimation of vegetation water content using hyperspectral vegetation indices: a comparison of crop water indicators in response to water stress treatments for summer maize
por: Zhang, F., et al.
Publicado: (2019) -
Rapid Quantification of Microalgae Growth with Hyperspectral Camera and Vegetation Indices
por: Salmi, Pauliina, et al.
Publicado: (2021) -
Enhancing Crop Yield Prediction Utilizing Machine Learning on Satellite-Based Vegetation Health Indices
por: Pham, Hoa Thi, et al.
Publicado: (2022) -
UAV-based multi-sensor data fusion and machine learning algorithm for yield prediction in wheat
por: Fei, Shuaipeng, et al.
Publicado: (2022) -
Entropy Weight Ensemble Framework for Yield Prediction of Winter Wheat Under Different Water Stress Treatments Using Unmanned Aerial Vehicle-Based Multispectral and Thermal Data
por: Fei, Shuaipeng, et al.
Publicado: (2021)