Cargando…

A wireless “Janus” soft gripper with multiple tactile sensors

Biomimetic properties allow soft robots to complexly interact with the environment. As the bridge between the robot and the operating object, the gripping hand is an important organ for its connection with the outside world, which requires the ability to provide feedback from the grasped object, sim...

Descripción completa

Detalles Bibliográficos
Autores principales: Han, Lei, Wang, Rui, Dong, Yupeng, Zhang, Xun, Wu, Chenggen, Zhao, Xiaoguang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: RSC 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9642356/
https://www.ncbi.nlm.nih.gov/pubmed/36381512
http://dx.doi.org/10.1039/d2na00208f
Descripción
Sumario:Biomimetic properties allow soft robots to complexly interact with the environment. As the bridge between the robot and the operating object, the gripping hand is an important organ for its connection with the outside world, which requires the ability to provide feedback from the grasped object, similar to the human sensory and nervous system. In this work, to cope with the difficulty of integrating complex sensing and communication systems into flexible soft grippers, we propose a GO/PI composite bilayer film-based gripper with two types of tactile sensors and a LC passive wireless transmission module to obtain the grip information and transmit it to the processor. The bilayer film structure demonstrates good photothermal driving performance. Pressure and material sensors are located at the tips of the gripper's fingers to acquire tactile information which is wirelessly transmitted to the processor for analysis via the LC circuit. The grasping and feedback of the gripper are presented through an intelligent display system, realizing the wireless interconnection between the robot terminal and processing system, exhibiting broad application potential.