Cargando…

Integrating expression data and genomic sequences to investigate transcriptional regulation in barley in response to abiotic stress

Abiotic stress responses are regulated critically at the transcriptional level. Clarifying the intricate mechanisms that regulate gene expression in response to abiotic stress is crucial and challenging. For this purpose, the factors that regulate gene expression and their binding sites in DNA shoul...

Descripción completa

Detalles Bibliográficos
Autores principales: Delavari, Azar, Zinati, Zahra, Sazegari, Sima, Tahmasebi, Ahmad
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Termedia Publishing House 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9642920/
https://www.ncbi.nlm.nih.gov/pubmed/36605711
http://dx.doi.org/10.5114/bta.2021.103759
Descripción
Sumario:Abiotic stress responses are regulated critically at the transcriptional level. Clarifying the intricate mechanisms that regulate gene expression in response to abiotic stress is crucial and challenging. For this purpose, the factors that regulate gene expression and their binding sites in DNA should be determined. By using bioinformatics tools, the differentially expressed probe sets were studied. A meta-analysis of transcriptomic responses to several abiotic stresses in barley was performed. Motif enrichments revealed that AP2/ERF (APETALA2/Ethylene-Responsive Factor) has the most frequent binding sites. We found that the bHLH transcription factor family has the highest number of transcription factor members. Moreover, network construction revealed that AP2 has the highest number of connections with other genes, which indicates its critical role in abiotic stress responses. The present research further predicted 49 miRNAs belonging to 23 miRNA families. This study identified the probable conserved and enriched motifs, which might have a role in the regulation of differentially expressed genes under abiotic stresses. In addition to shedding light on gene expression regulation, a toolbox of available promoters for genetic engineering of crop plants under such abiotic stresses was developed.