Cargando…

Optimization of culture conditions for improved green biodecolorization of methylene blue by Rhodococcus pyridinivorans strain UCC 0003

Methylene blue is a toxic dye present in the textile industry, and if left untreated, it causes harm to the environment. Therefore, to decolorize methylene blue from industrial effluents, a green approach using Rhodococcus pyridinivorans strain UCC 0003 was attempted. Methylene blue decolorization w...

Descripción completa

Detalles Bibliográficos
Autores principales: Maniyam, Maegala Nallapan, Hari, Mohanapriya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Termedia Publishing House 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9642922/
https://www.ncbi.nlm.nih.gov/pubmed/36606030
http://dx.doi.org/10.5114/bta.2021.106519
_version_ 1784826416028712960
author Maniyam, Maegala Nallapan
Hari, Mohanapriya
author_facet Maniyam, Maegala Nallapan
Hari, Mohanapriya
author_sort Maniyam, Maegala Nallapan
collection PubMed
description Methylene blue is a toxic dye present in the textile industry, and if left untreated, it causes harm to the environment. Therefore, to decolorize methylene blue from industrial effluents, a green approach using Rhodococcus pyridinivorans strain UCC 0003 was attempted. Methylene blue decolorization was measured spectro-photometrically, and the static condition yielded 86% decolorization after 24 h as compared to the shaking mode (20%). Optimization of static conditions using the one-factor-at-a-time approach resulted in 100% decolorization at 30°C, pH 6, inoculum size of 16% (v/v), and 5% (v/v) banana peel addition as a carbon source. The R. pyridinivorans strain UCC 0003 could successfully and completely decolorize 0.75 g/l methylene blue for 4 consecutive cycles, which is advantageous from an economic point of view. The rate of methylene blue disappearance was investigated using 10% (v/v) R. pyridinivorans strain UCC 0003 at 30°C over a certain incubation time with 0.4 g/l to 10.0 g/l methylene blue as the substrate. This study revealed V(max) and K(m) values of 37.04 g/l/h and 55.69 g/l, respectively, as the kinetic behavior of methylene blue-decolorizing enzymes from the bacterial strain. The properties of the treated solution of methylene blue resembled the control system (distilled water) for the phytotoxicity study, thereby indicating the complete removal of dye toxicity as evidenced by the growth of Vigna radiata and Triticum aestivum, respectively, in the treated methylene blue solution. This local bacterial strain has therefore a huge potential to be used as a green biocatalyst for the bioremediation of methylene blue-containing industrial effluents.
format Online
Article
Text
id pubmed-9642922
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Termedia Publishing House
record_format MEDLINE/PubMed
spelling pubmed-96429222023-01-04 Optimization of culture conditions for improved green biodecolorization of methylene blue by Rhodococcus pyridinivorans strain UCC 0003 Maniyam, Maegala Nallapan Hari, Mohanapriya BioTechnologia (Pozn) Research Papers Methylene blue is a toxic dye present in the textile industry, and if left untreated, it causes harm to the environment. Therefore, to decolorize methylene blue from industrial effluents, a green approach using Rhodococcus pyridinivorans strain UCC 0003 was attempted. Methylene blue decolorization was measured spectro-photometrically, and the static condition yielded 86% decolorization after 24 h as compared to the shaking mode (20%). Optimization of static conditions using the one-factor-at-a-time approach resulted in 100% decolorization at 30°C, pH 6, inoculum size of 16% (v/v), and 5% (v/v) banana peel addition as a carbon source. The R. pyridinivorans strain UCC 0003 could successfully and completely decolorize 0.75 g/l methylene blue for 4 consecutive cycles, which is advantageous from an economic point of view. The rate of methylene blue disappearance was investigated using 10% (v/v) R. pyridinivorans strain UCC 0003 at 30°C over a certain incubation time with 0.4 g/l to 10.0 g/l methylene blue as the substrate. This study revealed V(max) and K(m) values of 37.04 g/l/h and 55.69 g/l, respectively, as the kinetic behavior of methylene blue-decolorizing enzymes from the bacterial strain. The properties of the treated solution of methylene blue resembled the control system (distilled water) for the phytotoxicity study, thereby indicating the complete removal of dye toxicity as evidenced by the growth of Vigna radiata and Triticum aestivum, respectively, in the treated methylene blue solution. This local bacterial strain has therefore a huge potential to be used as a green biocatalyst for the bioremediation of methylene blue-containing industrial effluents. Termedia Publishing House 2021-07-05 /pmc/articles/PMC9642922/ /pubmed/36606030 http://dx.doi.org/10.5114/bta.2021.106519 Text en © 2021 Institute of Bioorganic Chemistry, Polish Academy of Sciences https://creativecommons.org/licenses/by-nc-nd/3.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs (CC BY-NC-ND), allowing third parties to download and share its works but not commercially purposes or to create derivative works.
spellingShingle Research Papers
Maniyam, Maegala Nallapan
Hari, Mohanapriya
Optimization of culture conditions for improved green biodecolorization of methylene blue by Rhodococcus pyridinivorans strain UCC 0003
title Optimization of culture conditions for improved green biodecolorization of methylene blue by Rhodococcus pyridinivorans strain UCC 0003
title_full Optimization of culture conditions for improved green biodecolorization of methylene blue by Rhodococcus pyridinivorans strain UCC 0003
title_fullStr Optimization of culture conditions for improved green biodecolorization of methylene blue by Rhodococcus pyridinivorans strain UCC 0003
title_full_unstemmed Optimization of culture conditions for improved green biodecolorization of methylene blue by Rhodococcus pyridinivorans strain UCC 0003
title_short Optimization of culture conditions for improved green biodecolorization of methylene blue by Rhodococcus pyridinivorans strain UCC 0003
title_sort optimization of culture conditions for improved green biodecolorization of methylene blue by rhodococcus pyridinivorans strain ucc 0003
topic Research Papers
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9642922/
https://www.ncbi.nlm.nih.gov/pubmed/36606030
http://dx.doi.org/10.5114/bta.2021.106519
work_keys_str_mv AT maniyammaegalanallapan optimizationofcultureconditionsforimprovedgreenbiodecolorizationofmethylenebluebyrhodococcuspyridinivoransstrainucc0003
AT harimohanapriya optimizationofcultureconditionsforimprovedgreenbiodecolorizationofmethylenebluebyrhodococcuspyridinivoransstrainucc0003