Cargando…
Modeling and mechanical perturbations reveal how spatially regulated anchorage gives rise to spatially distinct mechanics across the mammalian spindle
During cell division, the spindle generates force to move chromosomes. In mammals, microtubule bundles called kinetochore-fibers (k-fibers) attach to and segregate chromosomes. To do so, k-fibers must be robustly anchored to the dynamic spindle. We previously developed microneedle manipulation to me...
Autores principales: | Suresh, Pooja, Galstyan, Vahe, Phillips, Rob, Dumont, Sophie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9642996/ https://www.ncbi.nlm.nih.gov/pubmed/36346735 http://dx.doi.org/10.7554/eLife.79558 |
Ejemplares similares
-
Proofreading through spatial gradients
por: Galstyan, Vahe, et al.
Publicado: (2020) -
Spatial and Temporal Scaling of Microtubules and Mitotic Spindles
por: Lacroix, Benjamin, et al.
Publicado: (2022) -
Individual kinetochore-fibers locally dissipate force to maintain robust mammalian spindle structure
por: Long, Alexandra F., et al.
Publicado: (2020) -
Microneedle manipulation of the mammalian spindle reveals specialized, short-lived reinforcement near chromosomes
por: Suresh, Pooja, et al.
Publicado: (2020) -
Chromosome Movement in Mitosis Requires Microtubule Anchorage at Spindle Poles
por: Gordon, Michael B., et al.
Publicado: (2001)