Cargando…
Gene interaction perturbation network deciphers a high-resolution taxonomy in colorectal cancer
Molecular subtypes of colorectal cancer (CRC) are currently identified via the snapshot transcriptional profiles, largely ignoring the dynamic changes of gene expressions. Conversely, biological networks remain relatively stable irrespective of time and condition. Here, we introduce an individual-sp...
Autores principales: | Liu, Zaoqu, Weng, Siyuan, Dang, Qin, Xu, Hui, Ren, Yuqing, Guo, Chunguang, Xing, Zhe, Sun, Zhenqiang, Han, Xinwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
eLife Sciences Publications, Ltd
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9643007/ https://www.ncbi.nlm.nih.gov/pubmed/36345721 http://dx.doi.org/10.7554/eLife.81114 |
Ejemplares similares
-
Comprehensive machine-learning survival framework develops a consensus model in large-scale multicenter cohorts for pancreatic cancer
por: Wang, Libo, et al.
Publicado: (2022) -
Developing a taxonomy for colorectal cancer
por: Fang, Jiansong, et al.
Publicado: (2022) -
Gene Expression Profile Reveals a Prognostic Signature of Non–MSI-H/pMMR Colorectal Cancer
por: Liu, Zaoqu, et al.
Publicado: (2022) -
Machine learning-based integration develops an immune-derived lncRNA signature for improving outcomes in colorectal cancer
por: Liu, Zaoqu, et al.
Publicado: (2022) -
Integrative analysis from multi-center studies identities a consensus machine learning-derived lncRNA signature for stage II/III colorectal cancer
por: Liu, Zaoqu, et al.
Publicado: (2021)