Cargando…
The F-bZIP-regulated Zn deficiency response in land plants
MAIN CONCLUSION: This review describes zinc sensing and transcriptional regulation of the zinc deficiency response in Arabidopsis, and discusses how their evolutionary conservation in land plants facilitates translational approaches for improving the Zn nutritional value of crop species. ABSTRACT: Z...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9643250/ https://www.ncbi.nlm.nih.gov/pubmed/36348172 http://dx.doi.org/10.1007/s00425-022-04019-6 |
_version_ | 1784826480493068288 |
---|---|
author | Assunção, Ana G. L. |
author_facet | Assunção, Ana G. L. |
author_sort | Assunção, Ana G. L. |
collection | PubMed |
description | MAIN CONCLUSION: This review describes zinc sensing and transcriptional regulation of the zinc deficiency response in Arabidopsis, and discusses how their evolutionary conservation in land plants facilitates translational approaches for improving the Zn nutritional value of crop species. ABSTRACT: Zinc is an essential micronutrient for all living organisms due to its presence in a large number of proteins, as a structural or catalytic cofactor. In plants, zinc homeostasis mechanisms comprise uptake from soil, transport and distribution throughout the plant to provide adequate cellular zinc availability. Here, I discuss the transcriptional regulation of the response to zinc deficiency and the zinc sensing mechanisms in Arabidopsis, and their evolutionary conservation in land plants. The Arabidopsis F-group basic region leucine-zipper (F-bZIP) transcription factors bZIP19 and bZIP23 function simultaneously as sensors of intracellular zinc status, by direct binding of zinc ions, and as the central regulators of the zinc deficiency response, with their target genes including zinc transporters from the ZRT/IRT-like Protein (ZIP) family and nicotianamine synthase enzymes that produce the zinc ligand nicotianamine. I note that this relatively simple mechanism of zinc sensing and regulation, together with the evolutionary conservation of F-bZIP transcription factors across land plants, offer important research opportunities. One of them is to use the F-bZIP-regulated zinc deficiency response as a tractable module for evolutionary and comparative functional studies. Another research opportunity is translational research in crop plants, modulating F-bZIP activity as a molecular switch to enhance zinc accumulation. This should become a useful plant-based solution to alleviate effects of zinc deficiency in soils, which impact crop production and crop zinc content, with consequences for human nutrition globally. |
format | Online Article Text |
id | pubmed-9643250 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-96432502022-11-15 The F-bZIP-regulated Zn deficiency response in land plants Assunção, Ana G. L. Planta Review MAIN CONCLUSION: This review describes zinc sensing and transcriptional regulation of the zinc deficiency response in Arabidopsis, and discusses how their evolutionary conservation in land plants facilitates translational approaches for improving the Zn nutritional value of crop species. ABSTRACT: Zinc is an essential micronutrient for all living organisms due to its presence in a large number of proteins, as a structural or catalytic cofactor. In plants, zinc homeostasis mechanisms comprise uptake from soil, transport and distribution throughout the plant to provide adequate cellular zinc availability. Here, I discuss the transcriptional regulation of the response to zinc deficiency and the zinc sensing mechanisms in Arabidopsis, and their evolutionary conservation in land plants. The Arabidopsis F-group basic region leucine-zipper (F-bZIP) transcription factors bZIP19 and bZIP23 function simultaneously as sensors of intracellular zinc status, by direct binding of zinc ions, and as the central regulators of the zinc deficiency response, with their target genes including zinc transporters from the ZRT/IRT-like Protein (ZIP) family and nicotianamine synthase enzymes that produce the zinc ligand nicotianamine. I note that this relatively simple mechanism of zinc sensing and regulation, together with the evolutionary conservation of F-bZIP transcription factors across land plants, offer important research opportunities. One of them is to use the F-bZIP-regulated zinc deficiency response as a tractable module for evolutionary and comparative functional studies. Another research opportunity is translational research in crop plants, modulating F-bZIP activity as a molecular switch to enhance zinc accumulation. This should become a useful plant-based solution to alleviate effects of zinc deficiency in soils, which impact crop production and crop zinc content, with consequences for human nutrition globally. Springer Berlin Heidelberg 2022-11-08 2022 /pmc/articles/PMC9643250/ /pubmed/36348172 http://dx.doi.org/10.1007/s00425-022-04019-6 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Review Assunção, Ana G. L. The F-bZIP-regulated Zn deficiency response in land plants |
title | The F-bZIP-regulated Zn deficiency response in land plants |
title_full | The F-bZIP-regulated Zn deficiency response in land plants |
title_fullStr | The F-bZIP-regulated Zn deficiency response in land plants |
title_full_unstemmed | The F-bZIP-regulated Zn deficiency response in land plants |
title_short | The F-bZIP-regulated Zn deficiency response in land plants |
title_sort | f-bzip-regulated zn deficiency response in land plants |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9643250/ https://www.ncbi.nlm.nih.gov/pubmed/36348172 http://dx.doi.org/10.1007/s00425-022-04019-6 |
work_keys_str_mv | AT assuncaoanagl thefbzipregulatedzndeficiencyresponseinlandplants AT assuncaoanagl fbzipregulatedzndeficiencyresponseinlandplants |