Cargando…
Using an Automated Speech Recognition Approach to Differentiate Between Normal and Aspirating Swallowing Sounds Recorded from Digital Cervical Auscultation in Children
Use of machine learning to accurately detect aspirating swallowing sounds in children is an evolving field. Previously reported classifiers for the detection of aspirating swallowing sounds in children have reported sensitivities between 79 and 89%. This study aimed to investigate the accuracy of us...
Autores principales: | Frakking, Thuy T., Chang, Anne B., Carty, Christopher, Newing, Jade, Weir, Kelly A., Schwerin, Belinda, So, Stephen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9643257/ https://www.ncbi.nlm.nih.gov/pubmed/35092488 http://dx.doi.org/10.1007/s00455-022-10410-y |
Ejemplares similares
-
Cervical auscultation in the diagnosis of oropharyngeal aspiration in children: a study protocol for a randomised controlled trial
por: Frakking, Thuy T, et al.
Publicado: (2013) -
Effect of Modified Shaker Exercise on the Amplitude and Duration of Swallowing Sounds: Evidence from Cervical Auscultation
por: Babu, Sonia, et al.
Publicado: (2017) -
Non-invasive identification of swallows via deep learning in high resolution cervical auscultation recordings
por: Khalifa, Yassin, et al.
Publicado: (2020) -
New insight in the auscultation of respiratory sounds
por: Andrès, Emmanuel
Publicado: (2015) -
Cardiac Auscultation Lab Using a Heart Sounds Auscultation Simulation Manikin
por: Quinn, Antonia, et al.
Publicado: (2019)