Cargando…
Effect of dissolved humic acids and coated humic acids on tetracycline adsorption by K(2)CO(3)-activated magnetic biochar
Humic acids (HAs) widely exist in water environment, and has an important impact on the adsorption of pollutants. Herein, HAs (both dissolved and coated) was employed to assess the effect on the removal of the organic contaminant tetracycline (TC) by K(2)CO(3) modified magnetic biochar (KMBC). Resul...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9643364/ https://www.ncbi.nlm.nih.gov/pubmed/36347872 http://dx.doi.org/10.1038/s41598-022-22830-9 |
Sumario: | Humic acids (HAs) widely exist in water environment, and has an important impact on the adsorption of pollutants. Herein, HAs (both dissolved and coated) was employed to assess the effect on the removal of the organic contaminant tetracycline (TC) by K(2)CO(3) modified magnetic biochar (KMBC). Results showed that low concentration of dissolved HAs promoted TC removal, likely due to a bridging effect, while higher concentration of dissolved HAs inhibited TC adsorption because of the competition of adsorption sites on KMBC. By characterization analysis, coated HAs changed the surface and pore characteristics of KMBC, which suppressed the TC removal. In a sequential adsorption experiment involving dissolved HAs and TC, the addition of HAs at the end of the experiment led to the formation of HAs-TC ligands with free TC, which improved the adsorption capacity of TC. TC adsorption by KMBC in the presence of dissolved HAs and coated HAs showed a downward trend with increasing pH from 5.0 to 10.0. The TC adsorption process was favorable and endothermic, and could be better simulated by pseudo-second-order kinetics and Freundlich isotherm model. Hydrogen bonds and π–π interactions were hypothesized to be the underlying influencing mechanisms. |
---|