Cargando…
Standardised survival probabilities: a useful and informative tool for reporting regression models for survival data
BACKGROUND: When interested in studying the effect of a treatment (or other exposure) on a time-to-event outcome, the most popular approach is to estimate survival probabilities using the Kaplan–Meier estimator. In the presence of confounding, regression models are fitted, and results are often summ...
Autores principales: | Syriopoulou, Elisavet, Wästerlid, Tove, Lambert, Paul C., Andersson, Therese M.-L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9643385/ https://www.ncbi.nlm.nih.gov/pubmed/36050446 http://dx.doi.org/10.1038/s41416-022-01949-6 |
Ejemplares similares
-
Estimating causal effects in the presence of competing events using regression standardisation with the Stata command standsurv
por: Syriopoulou, Elisavet, et al.
Publicado: (2022) -
Marginal measures and causal effects using the relative survival framework
por: Syriopoulou, Elisavet, et al.
Publicado: (2020) -
Direct modelling of age standardized marginal relative survival through incorporation of time-dependent weights
por: Lambert, Paul C., et al.
Publicado: (2021) -
Erratum to: Marginal measures and causal effects using the relative survival framework
por: Syriopoulou, Elisavet, et al.
Publicado: (2020) -
Understanding disparities in cancer prognosis: An extension of mediation analysis to the relative survival framework
por: Syriopoulou, Elisavet, et al.
Publicado: (2020)