Cargando…
Deep learning for fully-automated nuclear pleomorphism scoring in breast cancer
To guide the choice of treatment, every new breast cancer is assessed for aggressiveness (i.e., graded) by an experienced histopathologist. Typically, this tumor grade consists of three components, one of which is the nuclear pleomorphism score (the extent of abnormalities in the overall appearance...
Autores principales: | Mercan, Caner, Balkenhol, Maschenka, Salgado, Roberto, Sherman, Mark, Vielh, Philippe, Vreuls, Willem, Polónia, António, Horlings, Hugo M., Weichert, Wilko, Carter, Jodi M., Bult, Peter, Christgen, Matthias, Denkert, Carsten, van de Vijver, Koen, Bokhorst, John-Melle, van der Laak, Jeroen, Ciompi, Francesco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9643392/ https://www.ncbi.nlm.nih.gov/pubmed/36347887 http://dx.doi.org/10.1038/s41523-022-00488-w |
Ejemplares similares
-
Resolution-agnostic tissue segmentation in whole-slide histopathology images with convolutional neural networks
por: Bándi, Péter, et al.
Publicado: (2019) -
Optimized tumour infiltrating lymphocyte assessment for triple negative breast cancer prognostics
por: Balkenhol, Maschenka CA., et al.
Publicado: (2021) -
Deep learning for multi-class semantic segmentation enables colorectal cancer detection and classification in digital pathology images
por: Bokhorst, John-Melle, et al.
Publicado: (2023) -
PROACTING: predicting pathological complete response to neoadjuvant chemotherapy in breast cancer from routine diagnostic histopathology biopsies with deep learning
por: Aswolinskiy, Witali, et al.
Publicado: (2023) -
Semi-Supervised Learning to Automate Tumor Bud Detection in Cytokeratin-Stained Whole-Slide Images of Colorectal Cancer
por: Bokhorst, John-Melle, et al.
Publicado: (2023)