Cargando…

Impact of a single water molecule on the atmospheric oxidation of thiophene by hydroperoxyl radical

Water as an important assistant can alter the reactivity of atmospheric species. This project is designed to investigate the impact of a single water molecule on the atmospheric reactions of aromatic compounds that have not been attended to comprehensively. In the first part, the atmospheric oxidati...

Descripción completa

Detalles Bibliográficos
Autores principales: Douroudgari, Hamed, Sharifi, Maryam Seyed, Vahedpour, Morteza
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9643398/
https://www.ncbi.nlm.nih.gov/pubmed/36347924
http://dx.doi.org/10.1038/s41598-022-22831-8
Descripción
Sumario:Water as an important assistant can alter the reactivity of atmospheric species. This project is designed to investigate the impact of a single water molecule on the atmospheric reactions of aromatic compounds that have not been attended to comprehensively. In the first part, the atmospheric oxidation mechanisms of thiophene initiated by hydroperoxyl radical through a multiwell-multichannel potential energy surface were studied to have useful information about the chemistry of the considered reaction. It was verified that for the thiophene plus HO(2) reaction, the addition mechanism is dominant the same as other aromatic compounds. Due to the importance of the subject and the presence of water molecules in the atmosphere with a high concentration that we know as relative humidity, and also the lack of insight into the influence of water on the reactions of aromatic compounds with active atmospheric species, herein, the effect of a single water molecule on the addition pathways of the title reaction is evaluated. In another word, this research explores how water can change the occurrence of reactions of aromatic compounds in the atmosphere. For this, the presence of one water molecule is simulated by higher-level calculations (BD(T) method) through the main interactions with the stationary points of the most probable pathways. The results show that the mechanism of the reaction with water is more complicated than the bare reaction due to the formation of the ring-like structures. Also, water molecule decreases the relative energies of all addition pathways. Moreover, atoms in molecule theory (AIM) along with the kinetic study by the transition state (TST) and the Rice–Ramsperger–Kassel–Marcus (RRKM) theories demonstrate that the overall interactions of a path determine how the rate of that path changes. In this regard, our results establish that the interactions of water with HO(2) (thiophene) in the initial complex 1WHA (1WTA or 1WTB) are stronger (weaker) than the sum of its interactions in transition states. Also, for the water-assisted pathways, the ratio of the partition function of the transition state to the partition functions of the reactants is similar to the respective bare reaction. Therefore, the reaction rates of the bare pathways are more than the water-assisted paths that include the 1WHA complex and are less than the paths that involve the 1WTA and 1WTB complexes.