Cargando…
Semi-supervised learning for topographic map analysis over time: a study of bridge segmentation
Geographical research using historical maps has progressed considerably as the digitalization of topological maps across years provides valuable data and the advancement of AI machine learning models provides powerful analytic tools. Nevertheless, analysis of historical maps based on supervised lear...
Autores principales: | Wong, Cheng-Shih, Liao, Hsiung-Ming, Tsai, Richard Tzong-Han, Chang, Ming-Ching |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9643415/ https://www.ncbi.nlm.nih.gov/pubmed/36348081 http://dx.doi.org/10.1038/s41598-022-23364-w |
Ejemplares similares
-
Lidar–Camera Semi-Supervised Learning for Semantic Segmentation
por: Caltagirone, Luca, et al.
Publicado: (2021) -
Semi-Supervised Learning for Defect Segmentation with Autoencoder Auxiliary Module
por: Sae-ang, Bee-ing, et al.
Publicado: (2022) -
Instance segmentation using semi-supervised learning for fire recognition
por: Sun, Guangmin, et al.
Publicado: (2022) -
A Semi-Supervised Transfer Learning with Grid Segmentation for Outdoor Localization over LoRaWans †
por: Chen, Yuh-Shyan, et al.
Publicado: (2021) -
Semi-supervised learning /
Publicado: (2010)