Cargando…
Noise-robust optimization of quantum machine learning models for polymer properties using a simulator and validated on the IonQ quantum computer
Quantum machine learning for predicting the physical properties of polymer materials based on the molecular descriptors of monomers was investigated. Under the stochastic variation of the expected predicted values obtained from quantum circuits due to finite sampling, the methods proposed in previou...
Autores principales: | Ishiyama, Yuki, Nagai, Ryutaro, Mieda, Shunsuke, Takei, Yuki, Minato, Yuichiro, Natsume, Yutaka |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9643424/ https://www.ncbi.nlm.nih.gov/pubmed/36347908 http://dx.doi.org/10.1038/s41598-022-22940-4 |
Ejemplares similares
-
Quantum optics: including noise reduction, trapped ions, quantum trajectories, and decoherence
por: Orszag, Miguel
Publicado: (2000) -
Quantum Optics: Including Noise Reduction, Trapped Ions, Quantum Trajectories, and Decoherence
por: Orszag, Miguel
Publicado: (2008) -
Quantum optics: including noise reduction, trapped ions, quantum trajectories, and decoherence
por: Orszag, Miguel
Publicado: (2016) -
Quantum computing formulation of some classical Hadamard matrix searching methods and its implementation on a quantum computer
por: Suksmono, Andriyan Bayu, et al.
Publicado: (2022) -
Noise-robust quantum sensing via optimal multi-probe spectroscopy
por: Müller, Matthias M., et al.
Publicado: (2018)