Cargando…
Counterfactual fairness: The case study of a food delivery platform’s reputational-ranking algorithm
Data-driven algorithms are currently deployed in several fields, leading to a rapid increase in the importance algorithms have in decision-making processes. Over the last years, several instances of discrimination by algorithms were observed. A new branch of research emerged to examine the concept o...
Autor principal: | Piccininni, Marco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9643653/ https://www.ncbi.nlm.nih.gov/pubmed/36389466 http://dx.doi.org/10.3389/fpsyg.2022.1015100 |
Ejemplares similares
-
The Influence of Counterfactual Comparison on Fairness in Gain-Loss Contexts
por: Li, Qi, et al.
Publicado: (2017) -
Food Reputation and Food Preferences: Application of the Food Reputation Map (FRM) in Italy, USA, and China
por: De Dominicis, Stefano, et al.
Publicado: (2020) -
Counterfactual Online Learning to Rank
por: Zhuang, Shengyao, et al.
Publicado: (2020) -
Pulling Rank: Military Rank Affects Hormone Levels and Fairness in an Allocation Experiment
por: Siart, Benjamin, et al.
Publicado: (2016) -
PreCoF: counterfactual explanations for fairness
por: Goethals, Sofie, et al.
Publicado: (2023)