Cargando…
The performance of deep generative models for learning joint embeddings of single-cell multi-omics data
Recent extensions of single-cell studies to multiple data modalities raise new questions regarding experimental design. For example, the challenge of sparsity in single-omics data might be partly resolved by compensating for missing information across modalities. In particular, deep learning approac...
Autores principales: | Brombacher, Eva, Hackenberg, Maren, Kreutz, Clemens, Binder, Harald, Treppner, Martin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9643784/ https://www.ncbi.nlm.nih.gov/pubmed/36387277 http://dx.doi.org/10.3389/fmolb.2022.962644 |
Ejemplares similares
-
Exploring generative deep learning for omics data using log-linear models
por: Hess, Moritz, et al.
Publicado: (2020) -
Multi-Omics Analysis of the Effects of Smoking on Human Tumors
por: Wang, Rui, et al.
Publicado: (2021) -
Editorial: Multi-omics: Trends and applications in clinical research
por: Sussulini, Alessandra, et al.
Publicado: (2022) -
Computational approaches for network-based integrative multi-omics analysis
por: Agamah, Francis E., et al.
Publicado: (2022) -
Editorial: Advances in methods and tools for multi-omics data analysis
por: Cominetti, Ornella, et al.
Publicado: (2023)