Cargando…
On the predictability of short-lived particulate matter around a cement plant in Kerman, Iran: machine learning analysis
One of the greatest environmental risks in the cement industry is particulate matter emission (i.e., PM(2.5) and PM(10)). This paper aims to develop descriptive-analytical solutions for increasing the accuracy of predicting particulate matter emissions using resample data of Kerman cement plant. Pho...
Autores principales: | Borhani, F., Shafiepour Motlagh, M., Ehsani, A. H., Rashidi, Y., Maddah, S., Mousavi, S. M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9643923/ https://www.ncbi.nlm.nih.gov/pubmed/36405244 http://dx.doi.org/10.1007/s13762-022-04645-3 |
Ejemplares similares
-
Estimation of short-lived climate forced sulfur dioxide in Tehran, Iran, using machine learning analysis
por: Borhani, Faezeh, et al.
Publicado: (2022) -
Evaluation of short-lived atmospheric fine particles in Tehran, Iran
por: Borhani, Faezeh, et al.
Publicado: (2022) -
Changes in short-lived climate pollutants during the COVID-19 pandemic in Tehran, Iran
por: Borhani, Faezeh, et al.
Publicado: (2021) -
Current Status and Future Forecast of Short-lived Climate-Forced Ozone in Tehran, Iran, derived from Ground-Based and Satellite Observations
por: Borhani, Faezeh, et al.
Publicado: (2023) -
Tropospheric Ozone in Tehran, Iran, during the last 20 years
por: Borhani, Faezeh, et al.
Publicado: (2021)