Cargando…
Pixel-level multimodal fusion deep networks for predicting subcellular organelle localization from label-free live-cell imaging
Complex intracellular organizations are commonly represented by dividing the metabolic process of cells into different organelles. Therefore, identifying sub-cellular organelle architecture is significant for understanding intracellular structural properties, specific functions, and biological proce...
Autores principales: | Wei, Zhihao, Liu, Xi, Yan, Ruiqing, Sun, Guocheng, Yu, Weiyong, Liu, Qiang, Guo, Qianjin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9644055/ https://www.ncbi.nlm.nih.gov/pubmed/36386823 http://dx.doi.org/10.3389/fgene.2022.1002327 |
Ejemplares similares
-
Multiple Parallel Fusion Network for Predicting Protein Subcellular Localization from Stimulated Raman Scattering (SRS) Microscopy Images in Living Cells
por: Wei, Zhihao, et al.
Publicado: (2022) -
Fluorescent Carbon Dots for Selective Labeling of
Subcellular Organelles
por: Unnikrishnan, Binesh, et al.
Publicado: (2020) -
Gm-PLoc: A Subcellular Localization Model of Multi-Label Protein Based on GAN and DeepFM
por: Wu, Liwen, et al.
Publicado: (2022) -
Effective Diagnosis of Alzheimer’s Disease via Multimodal Fusion Analysis Framework
por: Bi, Xia-an, et al.
Publicado: (2019) -
Mesoporous Silica Nanoparticles for Targeting Subcellular Organelles
por: Gisbert-Garzarán, Miguel, et al.
Publicado: (2020)