Cargando…

Studies of probe tip materials by atomic force microscopy: a review

As a tool that can test insulators' surface morphology and properties, the performance index of atomic force microscope (AFM) probes is the most critical factor in determining the resolution of microscopy, and the performance of probes varies in various modes and application requirements. This...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Ke, Liu, Yuzhe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Beilstein-Institut 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9644057/
https://www.ncbi.nlm.nih.gov/pubmed/36415853
http://dx.doi.org/10.3762/bjnano.13.104
Descripción
Sumario:As a tool that can test insulators' surface morphology and properties, the performance index of atomic force microscope (AFM) probes is the most critical factor in determining the resolution of microscopy, and the performance of probes varies in various modes and application requirements. This paper reviews the latest research results in metal, carbon nanotube, and colloidal probes and reviews their related methods and techniques, analyses the advantages and disadvantages of the improved probes compared with ordinary probes by comparing the differences in spatial resolution, sensitivity, imaging, and other performance aspects, and finally provides an outlook on the future development of AFM probes. This paper promotes the development of AFM probes in the direction of new probes and further promotes the broader and deeper application of scanning probe microscope (SPM).