Cargando…

Hyperglycemic Conditions Promote Rac1-Mediated Serine536 Phosphorylation of p65 Subunit of NFκB (RelA) in Pancreatic Beta Cells

BACKGROUND/AIMS: We recently reported increased phosphorylation (at S536) of the p65 subunit of NFκB (Rel A) in pancreatic beta (INS-1 832/13) cells following exposure to hyperglycemic (HG) conditions. We also demonstrated that HG-induced S536 phosphorylation of p65 is downstream to the regulatory e...

Descripción completa

Detalles Bibliográficos
Autores principales: Kowluru, Anjaneyulu, Gamage, Suhadinie, Hali, Mirabela, Gleason, Noah
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9644397/
https://www.ncbi.nlm.nih.gov/pubmed/35981264
http://dx.doi.org/10.33594/000000557
_version_ 1784826733659160576
author Kowluru, Anjaneyulu
Gamage, Suhadinie
Hali, Mirabela
Gleason, Noah
author_facet Kowluru, Anjaneyulu
Gamage, Suhadinie
Hali, Mirabela
Gleason, Noah
author_sort Kowluru, Anjaneyulu
collection PubMed
description BACKGROUND/AIMS: We recently reported increased phosphorylation (at S536) of the p65 subunit of NFκB (Rel A) in pancreatic beta (INS-1 832/13) cells following exposure to hyperglycemic (HG) conditions. We also demonstrated that HG-induced S536 phosphorylation of p65 is downstream to the regulatory effects of CARD9 since deletion of CARD9 expression significantly attenuated HG-induced S536 phosphorylation of p65 in beta cells. The overall objective of the current investigation is to identify putative mechanisms underlying HG-induced phosphorylation of p65 in islet beta cells following exposure to HG conditions. METHODS: INS-1 832/13 cells were incubated in low glucose (LG; 2.5 mM) or high glucose (HG; 20 mM) containing media for 24 hours in the absence or presence of small molecule inhibitors of G protein prenylation and activation. Non-nuclear and nuclear fractions were isolated from INS-1 832/13 cells using a commercially available (NE-PER) kit. Degree of S536 phosphorylation of the p65 subunit was quantified by western blotting and densitometry. RESULTS: HG-induced p65 phosphorylation was significantly attenuated by inhibitors of protein prenylation (e.g., simvastatin and L-788,123). Pharmacological inhibition of Tiam1-Rac1 (e.g., NSC23766) and Vav2-Rac1 (e.g., Ehop-016) signaling pathways exerted minimal effects on HG-induced p65 phosphorylation. However, EHT-1864, a small molecule compound, which binds to Rac1 thereby preventing GDP/GTP exchange, markedly suppressed HG-induced p65 phosphorylation, suggesting that Rac1 activation is requisite for HG-mediated p65 phosphorylation. Lastly, EHT-1864 significantly inhibited nuclear association of STAT3, but not total p65, in INS-1 832/13 cells exposed to HG conditions. CONCLUSION: Activation of Rac1, a step downstream to HG-induced activation of CARD9, might represent a requisite signaling step in the cascade of events leading to HG-induced S536 phosphorylation of p65 and nuclear association of STAT3 in pancreatic beta cells. Data from these investigations further affirm the role(s) of Rac1 as a mediator of metabolic stress- induced dysfunction of the islet beta cell.
format Online
Article
Text
id pubmed-9644397
institution National Center for Biotechnology Information
language English
publishDate 2022
record_format MEDLINE/PubMed
spelling pubmed-96443972022-11-14 Hyperglycemic Conditions Promote Rac1-Mediated Serine536 Phosphorylation of p65 Subunit of NFκB (RelA) in Pancreatic Beta Cells Kowluru, Anjaneyulu Gamage, Suhadinie Hali, Mirabela Gleason, Noah Cell Physiol Biochem Article BACKGROUND/AIMS: We recently reported increased phosphorylation (at S536) of the p65 subunit of NFκB (Rel A) in pancreatic beta (INS-1 832/13) cells following exposure to hyperglycemic (HG) conditions. We also demonstrated that HG-induced S536 phosphorylation of p65 is downstream to the regulatory effects of CARD9 since deletion of CARD9 expression significantly attenuated HG-induced S536 phosphorylation of p65 in beta cells. The overall objective of the current investigation is to identify putative mechanisms underlying HG-induced phosphorylation of p65 in islet beta cells following exposure to HG conditions. METHODS: INS-1 832/13 cells were incubated in low glucose (LG; 2.5 mM) or high glucose (HG; 20 mM) containing media for 24 hours in the absence or presence of small molecule inhibitors of G protein prenylation and activation. Non-nuclear and nuclear fractions were isolated from INS-1 832/13 cells using a commercially available (NE-PER) kit. Degree of S536 phosphorylation of the p65 subunit was quantified by western blotting and densitometry. RESULTS: HG-induced p65 phosphorylation was significantly attenuated by inhibitors of protein prenylation (e.g., simvastatin and L-788,123). Pharmacological inhibition of Tiam1-Rac1 (e.g., NSC23766) and Vav2-Rac1 (e.g., Ehop-016) signaling pathways exerted minimal effects on HG-induced p65 phosphorylation. However, EHT-1864, a small molecule compound, which binds to Rac1 thereby preventing GDP/GTP exchange, markedly suppressed HG-induced p65 phosphorylation, suggesting that Rac1 activation is requisite for HG-mediated p65 phosphorylation. Lastly, EHT-1864 significantly inhibited nuclear association of STAT3, but not total p65, in INS-1 832/13 cells exposed to HG conditions. CONCLUSION: Activation of Rac1, a step downstream to HG-induced activation of CARD9, might represent a requisite signaling step in the cascade of events leading to HG-induced S536 phosphorylation of p65 and nuclear association of STAT3 in pancreatic beta cells. Data from these investigations further affirm the role(s) of Rac1 as a mediator of metabolic stress- induced dysfunction of the islet beta cell. 2022-08-19 /pmc/articles/PMC9644397/ /pubmed/35981264 http://dx.doi.org/10.33594/000000557 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND). Usage and distribution for commercial purposes as well as any distribution of modified material requires written permission.
spellingShingle Article
Kowluru, Anjaneyulu
Gamage, Suhadinie
Hali, Mirabela
Gleason, Noah
Hyperglycemic Conditions Promote Rac1-Mediated Serine536 Phosphorylation of p65 Subunit of NFκB (RelA) in Pancreatic Beta Cells
title Hyperglycemic Conditions Promote Rac1-Mediated Serine536 Phosphorylation of p65 Subunit of NFκB (RelA) in Pancreatic Beta Cells
title_full Hyperglycemic Conditions Promote Rac1-Mediated Serine536 Phosphorylation of p65 Subunit of NFκB (RelA) in Pancreatic Beta Cells
title_fullStr Hyperglycemic Conditions Promote Rac1-Mediated Serine536 Phosphorylation of p65 Subunit of NFκB (RelA) in Pancreatic Beta Cells
title_full_unstemmed Hyperglycemic Conditions Promote Rac1-Mediated Serine536 Phosphorylation of p65 Subunit of NFκB (RelA) in Pancreatic Beta Cells
title_short Hyperglycemic Conditions Promote Rac1-Mediated Serine536 Phosphorylation of p65 Subunit of NFκB (RelA) in Pancreatic Beta Cells
title_sort hyperglycemic conditions promote rac1-mediated serine536 phosphorylation of p65 subunit of nfκb (rela) in pancreatic beta cells
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9644397/
https://www.ncbi.nlm.nih.gov/pubmed/35981264
http://dx.doi.org/10.33594/000000557
work_keys_str_mv AT kowluruanjaneyulu hyperglycemicconditionspromoterac1mediatedserine536phosphorylationofp65subunitofnfkbrelainpancreaticbetacells
AT gamagesuhadinie hyperglycemicconditionspromoterac1mediatedserine536phosphorylationofp65subunitofnfkbrelainpancreaticbetacells
AT halimirabela hyperglycemicconditionspromoterac1mediatedserine536phosphorylationofp65subunitofnfkbrelainpancreaticbetacells
AT gleasonnoah hyperglycemicconditionspromoterac1mediatedserine536phosphorylationofp65subunitofnfkbrelainpancreaticbetacells