Cargando…

C3NA: correlation and consensus-based cross-taxonomy network analysis for compositional microbial data

BACKGROUND: Studying the co-occurrence network structure of microbial samples is one of the critical approaches to understanding the perplexing and delicate relationship between the microbe, host, and diseases. It is also critical to develop a tool for investigating co-occurrence networks and differ...

Descripción completa

Detalles Bibliográficos
Autores principales: Song, Kuncheng, Zhou, Yi-Hui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9644555/
https://www.ncbi.nlm.nih.gov/pubmed/36348267
http://dx.doi.org/10.1186/s12859-022-05027-9
Descripción
Sumario:BACKGROUND: Studying the co-occurrence network structure of microbial samples is one of the critical approaches to understanding the perplexing and delicate relationship between the microbe, host, and diseases. It is also critical to develop a tool for investigating co-occurrence networks and differential abundance analyses to reveal the disease-related taxa–taxa relationship. In addition, it is also necessary to tighten the co-occurrence network into smaller modules to increase the ability for functional annotation and interpretability of  these taxa-taxa relationships.  Also, it is critical to retain the phylogenetic relationship among the taxa to identify differential abundance patterns, which can be used to resolve contradicting functions reported by different studies. RESULTS: In this article, we present Correlation and Consensus-based Cross-taxonomy Network Analysis (C3NA), a user-friendly R package for investigating compositional microbial sequencing data to identify and compare co-occurrence patterns across different taxonomic levels. C3NA contains two interactive graphic user interfaces (Shiny applications), one of them dedicated to the comparison between two diagnoses, e.g., disease versus control. We used C3NA to analyze two well-studied diseases, colorectal cancer, and Crohn’s disease. We discovered clusters of study and disease-dependent taxa that overlap with known functional taxa studied by other discovery studies and differential abundance analyses. CONCLUSION: C3NA offers a new microbial data analyses pipeline for refined and enriched taxa–taxa co-occurrence network analyses, and the usability was further expanded via the built-in Shiny applications for interactive investigation. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12859-022-05027-9.