Cargando…
C3NA: correlation and consensus-based cross-taxonomy network analysis for compositional microbial data
BACKGROUND: Studying the co-occurrence network structure of microbial samples is one of the critical approaches to understanding the perplexing and delicate relationship between the microbe, host, and diseases. It is also critical to develop a tool for investigating co-occurrence networks and differ...
Autores principales: | Song, Kuncheng, Zhou, Yi-Hui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9644555/ https://www.ncbi.nlm.nih.gov/pubmed/36348267 http://dx.doi.org/10.1186/s12859-022-05027-9 |
Ejemplares similares
-
Microbial genomic taxonomy
por: Thompson, Cristiane C, et al.
Publicado: (2013) -
Interventions at the end of life – a taxonomy for ‘overlapping consensus’
por: Clark, David, et al.
Publicado: (2017) -
Editorial: Microbial Taxonomy, Phylogeny and Biodiversity
por: Romalde, Jesús L., et al.
Publicado: (2019) -
Leveraging Scheme for Cross-Study Microbiome Machine Learning Prediction and Feature Evaluations
por: Song, Kuncheng, et al.
Publicado: (2023) -
Automating microbial taxonomy workflows with PHANTASM: PHylogenomic ANalyses for the TAxonomy and Systematics of Microbes
por: Wirth, Joseph S, et al.
Publicado: (2023)