Cargando…
Marginal structural models using calibrated weights with SuperLearner: application to longitudinal diabetes cohort.
Autores principales: | Kalia, Sumeet, Greiver, Michelle, Sullivan, Frank, Sejdic, Ervin, Escobar, Michael, Gronsbell, Jessica, O'Neill, Braden, Meaney, Christopher, Pow, Conrad, Saarela, Olli, Moineddin, Rahim, Chen, Tao, Aliarzadeh, Babak |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Swansea University
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9644660/ http://dx.doi.org/10.23889/ijpds.v7i3.1783 |
Ejemplares similares
-
Estimation of marginal structural models under irregular visits and unmeasured confounder: calibrated inverse probability weights
por: Kalia, Sumeet, et al.
Publicado: (2023) -
Using Primary Care Clinical Text Data and Natural Language Processing to Identify Indicators of COVID-19 in Toronto, Canada
por: Meaney, Christopher, et al.
Publicado: (2022) -
Non-negative matrix factorization temporal topic models and clinical text data identify COVID-19 pandemic effects on primary healthcare and community health in Toronto, Canada
por: Meaney, Christopher, et al.
Publicado: (2022) -
Cardiovascular risk factor documentation and management in primary care electronic medical records among people with schizophrenia in Ontario, Canada: retrospective cohort study
por: O’Neill, Braden, et al.
Publicado: (2020) -
Would you like to add a weight after this blood pressure, doctor? Discovery of potentially actionable associations between the provision of multiple screens in primary care
por: Kalia, Sumeet, et al.
Publicado: (2018)